THE PROGRAM FOR RESEARCH ON ELEVATED CONVECTION WITH INTENSE PRECIPITATION (PRECIP): AN OVERVIEW

Patrick Market, University of Missouri

Presented to the AMS Annual Meeting, 28th Conference on Weather Analysis and Forecasting
Ronald W. Przybylinski Memorial Session on Elevated Convection
25 January 2017, Seattle, WA

Acknowledgements

- Ron Przybylinski
 - Ron encouraged our continued study of cold season (ROCS) and warm season (PRECIP) elevated convection

Courtesy: NWA High Plains Chapter Webpage
Acknowledgements

- Funding for PRECIP – National Science Foundation
 - Dr. Neil Fox, Co-PI
 - Students
 - Laurel McCoy
 - Joshua Kastman
 - Chasity Henson
 - Alzina Foscato
 - Ryan Difani
 - Collaborators
 - Mike Bodner
 - NOAA/NWS/WPC
 - Dr. Scott Rochette
 - SUNY-College at Brockport

- PRECIP Project
 - Developed methods to predict where heavy-rain-producing elevated thunderstorms will occur
 - Deployed teams to collect observational data from storm environment
 - http://weather.missouri.edu/PRECIP or https://www.facebook.com/PRECIPresearchprogram
Introduction

Early work

- Colman (1990) initiated the modern era of elevated convection studies
- Showed the preferred region of elevated convection in US
 - northeast of a surface cyclone
 - north of its attendant warm front
- Moore et al. (2003) created composites
Later work...

- Corfidi et al. (2008)
 - Examined the nature of *altocumulus castellanus*
 - Determined that the “...division between elevated and surface-based [convective] activity is rarely distinct.”

Even later work...

- Parker (2008)
- Marsham et al. (2011)
- Schumacher (2015)
- Nowotarski et al. (2011)
- Billings and Parker (2012)

- PBL CAPE \Rightarrow often still some degree of boundary layer air contributing to the convection
- If some amount of near-surface CAPE is available, even with significant CIN in the profile, then the convection is likely surface-based to some degree
A Hierarchy of Elevated Convection

Pure: \(\tau > f^{-1} \)
ex: *wraparound*

Surface influences on mid-level parcels dramatically reduced or eliminated because of their 1) vertical location and/or 2) temporal history

Hybrid: \(\tau \sim f^{-1} \)
ex: *north of warm front*

Surface influences on mid-level parcels (if any) mitigated by their arrival over frontal inversion

Mixed: \(\tau < f^{-1} \)
ex: *warm sector castellanus*

Surface influences on mid-level parcels unrestricted
Objectives

- Study historical events of EC with HP over Colman (1990) bullseye
- Create method for forecasting heavy-rainfall-producing elevated thunderstorms in this region
- Deploy observational assets to observe events in real time
Scientific Questions

Hypotheses

- Upright convection from the release of elevated PI is the dominant mode in elevated convection that produces heavy precipitation

- Elevated convection cells are more shallow, but longer lasting than convection rooted in the boundary layer

- Elevated PI results primarily from differential temperature advection
Methods

Ideal Deployment Method

- 2 radiosonde sites
 - 2-hourly sampling typical
- Under the umbrella of 1-2 WSR-88D radar(s)
Archived Case Selection Methodology

❑ Event criteria:

✓ Produced over 2” rain in 24 hrs.

✓ Local rainfall maximum within CWA boundary

✓ Used North American Regional Reanalysis (NARR) to evaluate event

Archived Case Composite Method

❑ Composite events within following National Weather Service County Warning Areas (CWAs):
 - Kansas City/Pleasant Hill (EAX)
 - Springfield, MO (SGF)
 - Tulsa (TSA)
 - Wichita (ICT)
 - Topeka (TOP)
Results

Composites – Plan View (McCoy 2014)

250-mb Jet Core > 70 kt

Moisture – PWATs > 1.6” (~40 mm)
Lifting – 250-mb DIV > 3 x 10^{-5} s^{-1}
Instability – K Index > 32
Composites – Cross Section (McCoy 2014)

“The X”

EC from PI (Market et al. 2015)
EC Threats *(Kastman et al. 2015)*

- Lightning and rainfall characteristics
 - 8 elevated vs. 8 surface-based thunderstorm cases
 - 2007 through 2010; central CONUS
 - Areas of rainfall greater than 50.8 mm / 24 hours

- Elevated convection cases tend to produce
 - more rainfall
 - more total CG lightning flashes
 - more positive CG lightning flashes
 - than surface based thunderstorms

EPEC Parameter *(Foscato 2016; 2017)*

- Excessive Precipitation with Elevated Convection

\[
EPEC = KINX + PWAT + (\text{Div}_{250} \times 100,000) \quad mm \quad s^{-1}
\]

- Units are neglected

- Originally estimated from mean and interquartile range plots from McCoy (2014)
EPEC Parameter (Foscato 2016; 2017)

Evaluated at WPC during FFaR
Adopted at SensibleWeather.com

DCIN Parameter (Market et al. 2017)

- Downdraft Convective Inhibition
DCIN Parameter *(Market et al. 2017)*

- Downdraft Convective Inhibition

Convergence Columns *(Difani et al. 2017)*

- Vertical structures within coherent areas of CONV that are derived from Doppler radar radial velocity volume scans

- When associated with Z_{DR} columns, columns of convergence indicative of location of convective updraft
Convergence Columns (*Difani et al. 2017*)

- Convergence at lowest observed height in elevated cases is significantly lower than in surface-based convection.

EC Characteristics (*Wunsch et al. 2017*)

- Elevated cells tend to have
 - higher reflectivities, but
 - lower echo top heights
 - Indicates heavier rainfall rates, a known hazard w/EC

- Elevated cells have stronger convergence and thus stronger updrafts in the first 30-40 minutes of their lifetimes.
Conclusions

- **Synoptic environment**
 - EPEC - Several parameters with low interquartile ranges → higher confidence for EC/FF events
 - X “marks the spot” in cross sections
 - DCIN - Sounding parameter to help define EC

- **Storm-scale**
 - EC → higher reflectivities, but lower echo top heights
 - EC → more rainfall
 - EC → more total CG lightning flashes
 - EC → more positive CG lightning flashes
Thank you!!

Program for Research on Elevated Convection with Intense Precipitation

Dept. of Soil, Fed., & Atmospheric Sciences
University of Missouri

MarketP@missouri.edu

http://weather.missouri.edu/PRECIP

https://www.facebook.com/PRECIPresearchprogram

References

Difani R.J., N.I. Fox and P.S. Market, 2017: Distinguishing elevated from surface-based convection using convergence columns identified from dual-polarization Doppler radar data. 28th Conf. on Weather Analysis and Forecasting.

Market, P.S., S. M. Rochette, M. Bodner, N.I. Fox, and J.S. Kastman, 2017: Stability tendency during elevated convection events with heavy rainfall. 40th Annual Meeting of the National Weather Association, Oklahoma City, OK.

Schumacher, R.S., 2013: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 2507-2524.