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A B S T R A C T

Energy poverty in Missouri was analyzed using the four quadrant approach using both state and county level
data sets for two separate definitions of the grid. Predictions used machine learning techniques including
decision trees, random forest, extreme gradient boosting and support vector machines. It was determined
that the extreme gradient boosting performed the best when compared to all the other models after the
hyperparameters were tuned. The F1 scores for the county level data sets were higher than for the state
levels thus indicating greater predictability for the National Oceanic and Atmospheric Administration (NOAA)
climatological regional runs. For the county level data, the F1 score was the highest for region 1, which
coincided with one of the highest expenditure risk values whilst regions 2–4 were the lowest scoring area. In
grid 2, the largest class distribution changed from grid 1’s expenditure risk to the no risk category. This grid
had more variability in terms of the double risk class when compared to grid 1 and, as such, its predictability in
terms of its F1 scores was reduced. There were similarities in the ranking of the prediction scores for the regions
for both grids as regions 1 and 6 incurred the largest F1 values. Thus energy poverty can be classified and
predicted for Missouri, which in turn may aid policy makers via quantitative regional risk analysis. This data-
driven informed policy making can lead to the development and implementation of laws and social programs
to help ameliorate energy poverty.
1. Introduction

1.1. Energy poverty and its definition

There is no universal definition of energy poverty [1]. However,
energy poverty can be defined, in developed countries, as the inability
of households to pay their energy bills [2]. There are objective and
subjective indicators of energy poverty. The objective indicators are
based on a measure of energy poverty that includes household income
and energy expenditure, whilst the subjective indicators are based
on perception of energy cost and maintaining the basic standard of
living [3]. The objective indicators include the Ten Percent Rule, Low
Income High Cost, Minimum Income Standard and Compound Energy
Poverty Indicator. The Ten Percent Rule applies when a household
spends 10% or more of its income on energy which results in cases
when households with high income are considered energy poor [3].

∗ Corresponding author.
E-mail address: sarahsharlenebalkissoon@mail.missouri.edu (S. Balkissoon).

The Low Income High Cost definition rectifies this problem by consid-
ering both the income and energy expenditure. The objective indicator
methodology of Low Income High Cost is used in our study with two
defined grids and their corresponding energy poverty classifications
compared. Two grids were used as there is an arbitrariness in the
selection of income and expenditure thresholds, as it is difficult to
define energy poverty objectively [4].

1.2. Policy implications

The aim of this project is to aid policy makers in preventing energy
poverty by quantitative analysis of the risk areas within Missouri. This
data driven informed policy making via state legislature can aid in
the development and implementation of laws, social programs, fund-
ing opportunities and other initiatives to ameliorate their economic
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data mining, AI training, and similar technologies. 
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hardship and energy poverty. The social and economic roots that lead
to a household experiencing energy poverty, in the first instance,
can be addressed. The reduction of energy poverty can lead to the
decrease in aliments of physical and mental health as well as gender,
education and standard of living disparities as well as socioeconomic
deterioration [3,5].

Prediction is also relevant particularly to businesses, such as electric
utilities, that provide necessary services, but do not want to collect
and access sensitive data such as income. However, affordability of
these services is an important factor to utility regulators, and better
prediction methods of energy poverty could help utilities and utility
regulators implement programs towards households most likely to need
ssistance without having to collect these sensitive information.

1.3. Machine learning (ML) techniques in classification

There is a lack of conventional big data in the analysis of energy
overty [1]. Despite this limitation, socioeconomic data was sourced
or Missouri and machine learning techniques were used in this study.
raditional regression methods were not utilized because of their dif-
iculty in handling large data and their assumptions that there exists

correlations amongst the features [4,5]. ML methods are capable of
analyzing big data by automatically detecting patterns in the data
without assuming a priori, correlations amongst the variables. Also,
nonlinearity of the complex systems can be investigated using ML tech-
niques unlike conventional regression methods, which are purposed
for linear problems [3,4]. The application of eXplainable Artificial
ntelligence (XAI) can lead to the knowledge about the input–output
elationships as well as the predictors of energy poverty [2]. According
o [5], there is no one socioeconomic driver that determines house-

hold energy poverty. Empirical evidence from [5] also shows that
the socioeconomic aspects of a household are important indicators of
susceptibility to energy poverty. Hence the determinants as well as their
relationship with energy poverty is of importance.

2. Data

There is a scarcity of socioeconomic data for Missouri that include
household habitat data [1]. Despite the lack of data, energy poverty for
he state and counties in Missouri for households was obtained from [6]
or the year of 2018. The area median income data from the Low

Income Energy Affordability Data (LEAD) was utilized in this study.
There are, for the state of MO, 776,060 data points in this data set.
For this state the variables and their categorical values considered in
the analyses are given in Table 2. HINCP, ELEP, GASP, FULP, defined in
Table 2, included null values, which were inputted after pre-processing
of the data with their respective median inputs. The predictand, Colors,
was derived from the four quadrant approach. Colors are defined as
the risk type categories. The yearly income threshold was based on the

inimum wage of MO in 2018. It was determined to be $14,082.90.
his was in keeping with [4], where the income threshold was defined

as the 2015 minimum income level stipulated by the Dutch govern-
ment. Yearly expenditures was given as the sum of average household
electricity, gas and other fuel. This was also done as in [4]. For the first
rid, yearly expenditures exceeding 10% were also determined from the

ratio of FUEL_EXPENDITURE to the max FUEL_EXPENDITURE; this was
abeled ‘PERCENT_EnergyExp’. These two numeric values are the lines

of demarcation for the 4-quadrant grid. The quadrants were labeled as
No risk or Color 0 when HINCP > $14,082.90 and PERCENT_EnergyExp
< 10. Expenditure risk or Color 1, occurs when the households income
was greater than the annual accumulation of minimum wages but the
percent expenditure is greater than 10%. Income risk, Color 2 is where
he annual income is less than or equal to the defined income line of

demarcation and energy expenditure is less than or equal to the 10%
line. Double risk, Color 3, is where households spends more than 10%

but earns less than the yearly minimum wage accumulation for 2018. i

2 
Table 1
Statistics for the variables used in the state wide data set.
Statistics HINCP FUEL_EXPENDITURE

count 77.760600e+05 77.760600e+05
mean 4.115009e+04 1.921706e+03
std 2.587607e+04 8.286539e+02
min −9.11537e+03 1.168294e−08
max 8.8142383e+05 1.787769e+04

The 10% demarcation line of energy expenditure was chosen in keeping
with the standard classification procedures used in literature [4].

The statistics for the variables used in the grids construction of the
tate wide data set is shown Table 1.

Three data sets were considered as in [4]. The first included all
the variables in the table except for fuel expenditure, as including this
feature will incur 100% prediction accuracy of methods. The second,
had all variables except expenditure and income. Thirdly, the last
permutation only considered the income column. These were labeled
respectively as df_MO_A, df_MO_B and df_MO_C.

To prevent overfitting and to find the optimal parameters in the
raining process, cross validation was used. The model was verified

using 3 repeated 10-fold cross validations. This means that the original
ata were split randomly into 10 new training and validation sets.
hese evaluation data sets were repeated 3 times to conduct a per-
ormance test in the validation stage. The data are shuffled and then
plit into the 𝑘 (in our case, 10) unique groups. After the model was
itted and evaluated, the model is discarded whilst the score is retained
efore the process is repeated. The stratification aspect ensures that
ach fold has the same portion of observations belonging to a particular
ategory [3].

For the models, the metrics used were accuracy and F1 score.
Accuracy is defined as the ratio of correctly predicted observations to
the total number of observations. However, this metric is more suited
to cases where the data sets are balanced in terms of class distribution.
F1 score corrects this by determining class-wise performance, which is
written in terms of precision and recall as seen in Eq. (1). In the multi-
lass calculation of this metric, this score is determined individually
or each class, as in our study. The determination of the precision and

the recall parameters for say, class 0 is calculated from Eq. (2). The
implementation of this metric is done using Python sci-kit learn library.
The net F1 score is computed by utilizing various averaging techniques
such as macro averaging, micro averaging and weighted-averaging.
The weighted average, used in this study, is best for imbalanced class
distribution as in our case. The weighted F1 score for 𝑁 classes is
defined in Eq. (3). Please see Fig. 1 for the data set for MO, df_MO_A
where there is a disproportionate distribution for Color 0 or no risk.

𝐹1𝑠𝑐 𝑜𝑟𝑒 = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐 𝑎𝑙 𝑙 (1)

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝑐 𝑙 𝑎𝑠𝑠 = 0) = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0)
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0) + 𝐹 𝑎𝑙 𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0)

𝑒𝑐 𝑎𝑙 𝑙(𝑐 𝑙 𝑎𝑠𝑠 = 0) = 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0)
𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0) + 𝐹 𝑎𝑙 𝑠𝑒𝑁 𝑒𝑔 𝑎𝑡𝑖𝑣𝑒(𝑐 𝑙 𝑎𝑠𝑠 = 0)

(2)

𝑤𝑒𝑖𝑔 ℎ𝑡𝑒𝑑 𝐹1𝑠𝑐 𝑜𝑟𝑒 =
𝑁
∑

𝑖=1
𝑤𝑖 × 𝐹1𝑠𝑐 𝑜𝑟𝑒𝑖

𝑤𝑖 =
𝑁 𝑜.𝑂 𝑓 𝑆 𝑎𝑚𝑝𝑙 𝑒𝑠𝐼 𝑛𝐶 𝑙 𝑎𝑠𝑠𝑖
𝑇 𝑜𝑡𝑎𝑙 𝑁 𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑆 𝑎𝑚𝑝𝑙 𝑒𝑠

(3)

3. Methodology

Machine learning algorithms are utilized because of their ability
to explore nonlinear relationships between the response variables and
the predictor variables [3]. According to [1], the most commonly used
algorithms for AI energy poverty prediction are decision trees and
artificial neural networks. Decision trees are one method implemented
n this study with the methodology described below.
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Table 2
Description of variables input into analyses.

Variables Description Categories

TEN_CATEGORY Type of tenants 0 -Owner
1-Renter

YBL6_CATEGORY Year the building was first constructed 0- 2010 and later
1 -2000 to 2009
2- 1980 to 1999
3- 1960 to 1979
4-1940 to 1959
5- before 1940

BLD_CATEGORY Number units in building/ type of dwelling 0 - single family detached home
1 - single family attached home
2 - 2 unit multifamily home/ apartment
3 - 3–4 unit multifamily home/apartment
4 - 5–9 unit multifamily home/apartment
5 - 10–19 unit multifamily home/ apartment
6 - 20–49 unit multifamily home/apartment
7 - 50 + unit multifamily home/ apartment
8 - boat, recreational vehicle or van
9 - mobile or trailer home

HFL_CATEGORY Primary space heating fuel type 0 -utility/natural gas
1- bottled/propane or liquefied petroleum gas
2- electricity
3-fuel Oil
4-coal
5- wood
6-solar
7- other
8- none

AMI68_CATEGORY Area Median Income 0 - < 30%
1- 30%–60%
2- 60–80%
3-80–100%
4- 100+ %

UNITS Number of occupied housing units or households –

HINCP Average annual household income –

HINCP_UNITS Total HINCP x UNITS –

FUEL_EXPENDITURE Average household electricity (ELEP) + gas (GASP) + other fuel (FULP) expenditures –
Fig. 1. Class distribution of households within MO or count.
3.1. Decision trees

Decision trees are tree-like structure algorithms with connections
or nodes to learn patterns for the purpose of classification and pre-
diction [3]. This method uses the decision tree to split the data by
asking questions based on the columns or features [7]. This process
3 
of branching is continued until the algorithm reaches a desired accu-
racy [7]. According to [3], there are four steps in this method. The
growing step considers suitable split and stopping rules that determines
the time for expanding the nodes. The pruning step is where branches,
which cause overfitting, are removed. The validation step is where the
decision trees are evaluated using cross-validation with data. In the
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prediction and the interpretation phases of the process, the tree model
is established and prediction is completed. The split criterion is based
on the impurity index called the Gini Index [3]. This error method is
used by the decision tree to determine how the split should be made.
The lower the Gini index, the lower the error. The Gini index is define
mathematically below.

𝑔 𝑖𝑛𝑖 = 1 −
𝑐
∑

𝑖=1

(

𝑝𝑖
)2 (4)

where 𝑝𝑖 is the probability of the split resulting in the correct value or
he fraction of the set with the correct output label and 𝑐 is the total

number of classes.
The description of the hyperparameters to be tuned are as fol-

ows [7].

1. max_depth — this is the depth of the tree or the number of times
splits are made. This is utilized to reduce overfitting.

2. min_samples_leaf — this determines the minimum number of
samples a leaf may have. This is also used to minimize over-
fitting.

3. max_leaf_nodes — this hyperparameter specifies the maximum
number of leaves in the tree.

4. max_features — this considers a subset of the features for making
a split.

5. min_samples_split — this gives the minimum number of samples
required before a split is made.

6. splitter — this determines how the model would select the
features to split each branch. The ‘best’ splitter selects features
which would give the greatest gain of information whilst the
‘random’ option splits randomly.

7. criterion — this is the scoring method for the splits.
8. min-impurity_decrease — this specifies when to split for a par-

ticular impurity.
9. min_weight_fraction_leaf — of the total weights, this is the min-

imum weighted fraction necessary to be a leaf.

3.2. Random forest (RF)

Random forests are ensemble models that combine various versions
of the same model, decision trees, through bagging and bootstrap-
ing [3,7]. To reduce prediction errors, bootstrapping (sampling with
eplacement) is used to randomly select samples and features. It was
stimated mathematically that for each decision tree, two thirds of the
amples are unique whilst the remainder are duplicates [7]. This cre-

ates independent decision trees that collectively reduce overfitting is-
ues [3]. This algorithm utilizes Out-of-bag (OOB) infrastructure where
he test data are the data samples not extracted from the bootstrap-
ing method [3]. The random forest uses majority rule for classifiers,

where after each decision tree makes its prediction, the final result is
aggregated using majority rules [7].

There are additional hyperparameters for the random forest [7].
They are:

1. oob_score — When this is true, it is not necessary to split the
data into train and test. The samples not chosen in the bagging
procedure will be used as the test data set.

2. n_estimators — This parameter determines the number of trees
in this algorithm. As this parameter increases, the score plateaus.

3. warm_start — This hyperparameter is useful when determining
the optimal number of trees. When true, the model does not
start from the beginning when adding more trees; it restarts from
where the previous model ended.

4. bootstrap — This is sampling with replacement, if this is listed
as false, then oob_score cannot be set as true.

5. verbose — This is used to display more information of the model.

h

4 
The other hyperparameters which are the same as for the decision tree
algorithm, but they are not as important for this model.

3.3. Extreme gradient boosting (XGB)

This method, unlike the random forest, is based on boosting, an
algorithm that learns the mistakes of the trees and adjusts the new
trees based on errors derived from previous trees [2,7]. Unlike bagging,
these trees are constructed and operated in isolation [7]. Since boosting
does not focus on developing a strong baseline model, the algorithm
pays attention to the transformation of weak to strong learners via
iterations [3,7]. To determine the score of the model, the sum of the
residuals of the individual trees is calculated.

There are hyperparameters for this model as well. The two most
important parameters are learning_rate and n_estimators as described
elow. Generally, as the n_estimators increase, the learning_rate should
e decreased [7].

1. n_estimators — this as mentioned previously, determines the
number of trees in the ensemble.

2. learning_rate or eta — this determines the contribution of indi-
vidual trees to the model. This value is contained in the closed
interval [0, 1]. It defaults to 0.1, which implies that the trees in
the model have an influence of 10%.

3. max_depth — this determines the depth of the tree
4. Lagrange multiplier — nodes must exceed this value before other

splits are made in accordance with the loss function- it restricts
when splits are made, and thus causes shallower trees.

5. min_child_weight — This is the minimum sum of the weights
required for a split.

6. subsample — this determine the number of rows for each boost-
ing.

7. colsample_bytree — this randomly selects columns or features
for model run.

8. booster or base learner — this is the initial decision tree of the
ensemble. It defaults to the common usage of gbtree or gradient
boosted tree.

3.4. Support vector machine (SVM)

SVM is a generalization of the maximal margin classifier. First we
define what is a hyperplane. In 𝑝-dimensional space, it is a subspace
hat is flat, affine and of 𝑝− 1 dimensions. Thus for 2 or 3 dimensions,
 hyperplane is a line or a plane, respectively. Mathematically, for 2

dimensions a hyperplane is defined by Eq. (5) [8]

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 = 0 (5)

where 𝛽0, 𝛽1 and 𝛽2 are parameters. Any 𝑋 = (𝑋1, 𝑋2)𝑇 which Eq. (5)
holds, is a point on the hyperplane. Generally, in 𝑝-dimensions, a
hyperplane can be written as

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑝𝑋𝑝 = 0 (6)

where any point 𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑝)𝑇 in 𝑝-dimensional space that
satisfies Eq. (6), lies on the hyperplane. If Eq. (6) is greater than or less
than 0, then X lies on opposite sides on the hyperplane. The concept
of a separating hyperplane is used as a classifier for the data. For the
lassification of test observation 𝑥∗, the sign of the equation 𝑓 (𝑥∗) =
0 + 𝛽1𝑥∗1 +⋯+ 𝛽𝑝𝑥∗𝑝 determines the class observation assignment. Also,
f the magnitude of the 𝑓 (𝑥∗) is furthest away from 0, then we are more
ertain or confident about the assignment of the class [8].

The optimal way of separating the hyperplane, termed maximal
margin hyperplane, is the hyperplane that has the largest margin or has
he largest minimal distance from the observations to the hyperplane.
he maximal margin classifier is based on the classification of the test
bservations’ relative positioning with respect to the maximal margin
yperplane. The support vectors are the observations that are contained
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within the width or on the wrong side of the margin in which the
maximal margin hyperplane is dependent upon [8].

However, there may exist cases where observations that belong to
the classes may not be separated by the hyperplane. The support vector
classifier allows for the misclassification of points from the training
set. The number of violations of the margin is determined by the non-
negative hyperparameter 𝐶, where 𝐶 is defined as a bound of the sum
of the 𝜖𝑖s, where 𝜖𝑖 are the slack variables, which allow the observations
to be on the wrong side of the margin or the hyperplane. For a small
value of 𝐶, margins are narrow, thus implying a classifier that is highly
fit to the data. For larger 𝐶 values, more violations or support vectors
are allowed [8].

The support vector machine (SVM) is an extension of the support
vector classifier where the feature space is enlarged using kernels or
functions to accommodate non-linear class boundaries between classes.
The linear support classifier can be mathematically represented as
Eq. (7).

𝑓 (𝑥) = 𝛽0 +
𝑛
∑

𝑖=1
𝛼𝑖 ⟨𝑥, 𝑥𝑖⟩ (7)

where 𝛼𝑖 are n parameters each for a training observation. To estimate
these parameters we need the inner products of all pairs of the training
set,

⟨

𝑥𝑖, 𝑥′𝑖
⟩

. This can be further simplified as below.

𝑓 (𝑥) = 𝛽0 +
∑

𝑖𝜀𝑆
𝛼𝑖 ⟨𝑥, 𝑥𝑖⟩ (8)

where 𝑆 is the set of indices where the training observations are
support vectors and thus 𝛼𝑖 are non-zero. We can replace the inner
products in Eq. (8) by a generalization, that is 𝐾; a function which
determines the similarity between two observations, referred to as a
kernel. The linear polynomial of degree 𝑑 and radial kernels can be
written respectively as Eqs. (9)–(11)

𝐾(𝑥𝑖, 𝑥𝑖′ ) =
𝑝
∑

𝑗=1
𝑥𝑖𝑗𝑥𝑖′𝑗 (9)

𝐾(𝑥𝑖, 𝑥𝑖′ ) =
(

1 +
𝑝
∑

𝑗=1
𝑥𝑖𝑗𝑥𝑖′𝑗

)𝑑

(10)

𝐾(𝑥𝑖, 𝑥𝑖′ ) = 𝑒𝑥𝑝

(

−𝛾
𝑝
∑

𝑗=1

(

𝑥𝑖𝑗 − 𝑥𝑖′𝑗
)2
)

(11)

where 𝑑 is a positive integer representing the degree the polynomial
and 𝑑 > 1 implies a more flexible boundary. Also, 𝛾 is a positive
constant [8]. Our problem is not a binary classification as there are
𝐾 > 2 classes. For this we need to further extend our approach to
one-versus-one classification or one-versus-all classification. The former
method,

(𝐾
2
)

SVMs compares pairs of classes. The largest total number
of times a class was assigned to an observation is deemed the final
classification. The latter fits 𝐾 SVMs where each class is compared
to the rest of the 𝐾 − 1 classes. From this fit, the parameters are
𝛽0𝑘, 𝛽1𝑘,… , 𝛽𝑝𝑘. The observation, 𝑥∗, is assigned to the class whose value
of 𝛽0𝑘 + 𝛽1𝑘𝑥∗1 +⋯ + 𝛽𝑝𝑘𝑥∗𝑝 is the largest [8].

4. Results

Fig. 2 shows the Energy-Poverty grid where each quadrant repre-
sents a class described in the data section. The classes are no risk,
expenditure risk, income risk and double risk.

When the three MO data sets were used, df_MO_A (all variables
except expenditure), df_MO_B (all variables except expenditure and
income) and df_MO_C (only income), it was determined that the data
set with all the variables except expenditure incurred the least errors
and had the most accuracy for the decision tree model. The first to
the third data sets had a percentage accuracy of 85.3%, 79.9% and
78.7%, respectively. The confusion matrices for these models are shown
in Figs. 3 to 5. The confusion matrices show that along the diagonals,
the predicted labels, which are equal to the true labels are highest for
5 
Fig. 2. Energy poverty grid for MO where green, orange, blue and red quadrants
represents no risk, expenditure risk, income risk and double risk categories, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Confusion matrix for the first data set using decision trees. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the first data set. Consequently, throughout our analyses henceforth, we
investigated only this first data set for MO using its specified features.

For all three datasets, the decision tree models were rerun using syn-
thetic minority oversampling technique (SMOTE). This method is done
to balance class distribution by replicating and randomly increasing the
minority class examples. It is the most commonly used oversampling
technique. The best performing dataset with specific features was the
same as without SMOTE, df_MO_A. For these datasets, the percentage
accuracy using SMOTE, when compared to runs without SMOTE, were
almost the same for df_MO_A (85.3%) and df_MO_C (79.4%). The
dataset with all variables except income and expenditure, df_MO_B, saw
a significant decrease in accuracy by almost 10%; its accuracy score was
70.6%. However, this accuracy decrease is not an implication of the
poor performance of SMOTE. SMOTE, used as in our case because of
class imbalance of the original dataset, rectifies the model’s propensity
to predict the majority class well whilst performing poorly in predicting
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Fig. 4. Confusion matrix for the second data set using decision trees. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Confusion matrix for the third data set using decision trees. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the minority classes. This allows the model to predict all the classes
evenly which may result in a decrease in the overall accuracy of the
model as its performance in terms of accuracy of the majority class may
decrease.

For our MO data set under consideration, RandomizedSearchCV
was used to tune the hyperparameters. This method, unlike Grid-
SearchCV, tries a random number of hyperparameter combinations.
For the decision tree model, after inputting a range of values for
the hyperparameters described in the methodology, from the random-
ized search, the max_features, max_leaf_nodes, min_impurity_decrease,
min_samples_split and min_weight_fraction_leaf were determined to be
0.85, 30, 0.005, 10, 0.0075, respectively. The accuracy of this tuned
model was computed to be 86.6%.

SMOTE was used in this tuned model. The accuracy was almost
similar in magnitude to the tuned model without SMOTE. Its accuracy
value was 87.0%. The various scores of the metrics for each of the
classes are tabulated in Table 3 for this model run of df_MO_A.

The most important features evaluated from this model are depicted
in Fig. 6. From this plot, the average annual household income is the
6 
Table 3
Metric scores for each of the classes using the SMOTE in the tuned decision
tree model with data, df_MO_A.

Class Precision Recall F1 score

No risk 0.93 0.91 0.92
Expenditure risk 0.75 0.81 0.78
Income risk 0.67 0.68 0.67
Double risk 0.68 0.67 0.67
Accuracy 0.87
Macro average 0.76 0.77 0.76
Weighted average 0.88 0.87 0.87

Fig. 6. Important Features determined from the decision tree model for grid 1.

most important feature followed by the type of dwelling and type of
tenants. Thus we can predict energy poverty using this model with
86.6% accuracy using the three most important features of HINCP, BLD
and TEN.

From [1–5], income or wealth is the most important feature. In
our study, this is also the most important driver. We expected primary
space heating fuel type to have more contribution in terms of feature
importance because an important factor of energy poverty is access to
modern forms of energy instead of the low efficiency, high pollution
given by firewood, coal and kerosene amongst others [9]. However,
after further analysis of the data, we discovered that for this column the
data were repeating each category five times, hence it added little or no
information to the model. The second and third most important features
are type of dwelling and the type of tenants, respectively. Studies have
shown that these two factors are indicators to those susceptible to
energy poverty [3]. Detached houses are more vulnerable to energy
poverty than apartments. This is also true for rented households where
the houses may have lower energy efficiency [3].

Next we applied the random forest technique. From the hyperpa-
rameters mentioned in the methodology for the random forest model,
the oob_score was set to true and the n_estimators were determined
for a warm_start. A plot of various scores for increments of 50 trees
showed that the optimal n_estimators is 350. This can be seen in Fig. 7,
where for this value, there is a peak in the score before it plateaus. The
accuracy using this model after the hyperparameters were tuned and
defined increased to 87.5%.

SMOTE was also used in the random forest model using the same
dataset used without SMOTE. It was determined that the accuracy score
further increased to 88.2%. The classification report is given in Table 4.
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Fig. 7. Scores for various n_estimators using Random forest warm start model.

Table 4
Metric scores for each of the classes using the SMOTE in the random forest
model with data, df_MO_A.

Class Precision Recall F1 score

No risk 0.96 0.90 0.93
Expenditure risk 0.75 0.88 0.81
Income risk 0.72 0.71 0.71
Double risk 0.72 0.72 0.72
Accuracy 0.88
Macro average 0.79 0.80 0.79
Weighted average 0.89 0.88 0.89

Fig. 8. Accuracy scores of the number of estimators or trees for the Extreme Gradient
Boosting model.

For the larger models of XGB and SVM, Repeated Stratified KFold
Cross Validation were utilized. This is where stratified sampling is used
instead of random sampling.

For the XGB model, the hyperparameters were tuned and the results
were plotted using box and whisker in Figs. 8 through 11. Thereafter,
for each of these hyperparameters, tables showing the values of the
mean accuracy scores are shown (see Tables 5–9). These plots show
from the top: the max, upper quartile, median (horizontal line in
box), mean (triangular value), lower quartile, min and outliers values,
respectively. The number of estimators, shown in Fig. 8, was increased
from the default of 100 to 1000 as the accuracy score plateaus from
that value. Similarly for the tree depth, there is an increasing trend
of model performance with this hyperparameter as seen in Fig. 9. The
tree depth was defined to be 10, an increase from the default of 6. The
largest accuracy score was given from a learning rate of 1.0. However,
as seen later, this parameter value was too large and gave poor results.
From Fig. 12, the subsample was determined to be 0.6, after this value,
the mean accuracy score plateaus. The max of all the mean values of
the number of features parameter was chosen to be the optimal value
as the accuracy score kept increasing (see Fig. 11). This indicates that
7 
Fig. 9. Accuracy scores of the max or trees depth for the Extreme Gradient Boosting
model.

Fig. 10. Accuracy scores of eta or learning rate for the Extreme Gradient Boosting
model.

Fig. 11. Accuracy scores of the colsample_bytree or number of features for the Extreme
Gradient Boosting model.

all eight features were utilized in these analyses. The model was run
with these hyperparameters, however as alluded before, the accuracy
score was poor compared to the random forest, it was determined to
be 0.644 or 64.4%. However, after experimentation with the learning
rate, or eta, the largest accuracy thus far was given with this parameter
value of 0.1. The accuracy increased to 90.5%.

The final model we tuned is the Support Vector Machine (SVM). The
radial basis function was chosen after tuning, as the kernel function.
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Table 5
Mean accuracy scores for the number of estimators or
trees.
Number of trees Mean accuracy scores

10 0.879
50 0.883
100 0.888
500 0.898
1000 0.901
5000 0.901

Table 6
Mean accuracy scores for the max or tree depth.
Tree depth Mean accuracy scores

1 0.875
2 0.878
3 0.880
4 0.882
5 0.885
6 0.888
7 0.891
8 0.893
9 0.896
10 0.899

Table 7
Mean accuracy scores for the eta or learning rate.
Learning rate Mean accuracy scores

0.0001 0.877
0.0010 0.878
0.0100 0.877
0.1000 0.882
1.0000 0.891

Fig. 12. Accuracy scores of the subsamples or number of samples for the Extreme
Gradient Boosting model.

This was possibly selected because of the non-linearity of the data. The
associated 𝑔 𝑎𝑚𝑚𝑎 parameter, which determines the curvature in the
decision boundary, was determined to be 10. The higher this parameter
the larger the curvature. The 𝐶 parameter, which controls the error
in the SVM model, was also determined to be 10. The lower the 𝐶
value, the lower the error, however a lower 𝐶 value as model input
does not imply a better model. The accuracy of this model evaluation
was determined to be 82.5%.

The Table 10 below summarizes the average accuracy and F1 scores
for each of the models. These results are for the models using SMOTE
and Repeated Stratified KFold. For the Repeated Stratified KFold, the
average of all the repeated splits were taken, in our case to be 30. From
these results, the Extreme gradient boosting does the best followed by
random forest, decision tree and SVM models. This is the reverse for the
8 
Table 8
Mean accuracy scores for the subsamples or number
of samples.
Subsamples Mean accuracy scores

0.1 0.883
0.2 0.885
0.3 0.886
0.4 0.887
0.5 0.887
0.6 0.888
0.7 0.888
0.8 0.888
0.9 0.888
1.0 0.888

Table 9
Mean accuracy scores for the colSample by tree or number
of features.
Number of features Mean accuracy scores

0.1 0.879
0.2 0.879
0.3 0.882
0.4 0.885
0.5 0.885
0.6 0.885
0.7 0.886
0.8 0.886
0.9 0.887
1.0 0.888

Table 10
Accuracy and F1 Scores for the models for Grid 1.
Model Accuracy (%) F1 Score (%)

Decision tree 87.0 87.0
Random forest 88.2 89.0
Extreme gradient boosting 90.5 90.6
Support vector machine 82.5 85.4

Table 11
Grid 2 metric scores for each of the classes using the SMOTE in the decision
tree model with data, df_MO_A.

Class Precision Recall F1 score

No risk 0.98 0.95 0.96
Expenditure risk 0.44 0.67 0.53
Income risk 0.43 0.53 0.47
Double risk 0.91 0.87 0.88
Accuracy 0.92
Macro average 0.69 0.75 0.71
Weighted average 0.94 0.92 0.93

features and data set of [3] in which the random forest had a F1 score
of 0.9794 compared to the extreme gradient boosting score of 0.9698.
The SVM however, with regards to performance evaluation, does worst
compared to these other three models for both studies.

Also, grid 2 was constructed similarly to grid 1 but the energy
expenditure percentage was given as the ratio of energy expenditure
to the corresponding household income. This grid construction utilizes
a more economically intuitive definition. The accuracy and F1 scores
for the tuned decision tree and random forest models without SMOTE
were determined to be 95.0%, 93.6% and 95.1%, 94.8% respectively.
For these models, using SMOTE, the classification reports are tabulated
in Tables 11 and 12.

The accuracy and the F1 scores for all of the models were de-
termined, as well, for this construction using SMOTE and Repeated
Stratified KFold. This is shown in Table 13. The data set used in
this analysis consisted of all the features except expenditure as this
combination of variables also gave the highest accuracy using the
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Table 12
Grid 2 metric scores for each of the classes using the SMOTE in the random
forest model with data, df_MO_A.

Class Precision Recall F1 score

No risk 0.98 0.95 0.97
Expenditure risk 0.47 0.72 0.57
Income risk 0.51 0.53 0.52
Double risk 0.91 0.90 0.91
Accuracy 0.93
Macro average 0.72 0.78 0.74
Weighted average 0.95 0.93 0.94

Table 13
Accuracy and F1 Scores for the models using Grid 2.
Model Accuracy (%) F1 Score (%)

Decision tree 92.4 93.0
Random forest 93.1 94.0
Extreme gradient boosting 95.9 95.7
Support vector machine 94.7 93.9

Fig. 13. Important Features determined from the decision tree model for grid2.

Table 14
Statistics for the variables used in the county wide data set.
Statistics HINCP FUEL_EXPENDITURE

count 1.043520e+06 1.043520e+06
mean 3.738124e+04 2.074139e+03
std 2.139671e+04 7.928294e+02
min −7.169553e+03 1.208800e−08
max 8.814238e+05 1.787769e+04

decision tree model. The most important features given by this decision
tree model is depicted in Fig. 13. We note that the most important
feature for this grid is also income.

The gradient boosting is our best performing model for both grids.
This is the motivation for its utilization in the subsequent analysis using
the county level data set. It should be noted though that future works
will include the computations of each model run for the six climatolog-
ical regions described below in order to establish the best performing
algorithm for each data subset. The statistics for this county level data
is shown in Table 14 . As above, this model’s hyperparameters were
tuned to obtain optimal performance.

The analyses were rerun for the NOAA six climate divisions of
Missouri as shown in [10]. These regions are labeled as 1, 2,… , 6 in
Fig. 14. The Energy Expenditure-Income Plots for the various regions
for grid 1 are depicted in Fig. 15.
9 
Fig. 14. Six climate regions of missouri defined by the national oceanic and atmo-
spheric administration (NOAA).

The percentage of contribution of each class for the various regions
to the total count of each sector for grid 1 is shown in Table 15.
From this table, it can be noted that the county level data used in
aggregation to produce the climatological regional data sets has more
entries classified as expenditure poor compared to the Missouri data
set which saw the highest classification of no risk. The county-level
data set has more data points than the state wide-data set. There were
1,043,520 households in this data set.

The F1 scores for the prediction of the classes of each of the test sets
of the climatological regions ranged from 95.5–98.6%. This can be seen
in the Map of Fig. 16. There is an increase from the 90.6% score when
using the state level data set. This can be attributed to the largest class
distribution for the state-level data being no risk with approximately
70% of the total count. In contrast, the largest class distribution for
the county-level data set was an estimated 88% for the expenditure
risk category. It can be noted that high model predictability came from
region 1, which had the largest number of data points and represented
the area in Missouri where the expenditure risk was the second largest
in Table 15. The regions 2, 3 and 4, all color coded in the lowest part of
the scale, had comparatively the most variability of class distribution
or less class imbalance as these were the areas that had the largest no
risk percentages.

To determine the most at-risk of the population, the county data
is thus used for the analysis using the redefined grid. Using grid 2,
the energy poverty classes are computed for the six climate regions. As
mentioned previously, grid 2 was constructed as in grid 1 except that
the energy expenditure percentage was derived from the ratio of energy
expenditure to the corresponding household income. This is in keeping
with the official definition of energy poverty referenced in [11].

The energy poverty categories from this redefined grid can be seen
in Fig. 17. Two assumptions were made to clean the data of spurious
entries. All negative values of income and expenditure were removed
along with all rows where fuel expenditure exceeded income. As such,
the revised count for each of the regions are shown in the Table 16.

It is evident from Table 16 that there is a shift where the dominating
class in the grid comes from the no risk category. There is a lower
percentage from the income risk compared to grid 1 but there is a larger
spread of values among the classes. For example, for grid 1, the range
of values for the percentage double risk is 3.4 to 4.4 whilst for grid 2
it is 4.4 to 6.6.

It is noted that the NOAA regions do not map perfectly onto the
Missouri electric service areas, but for some zones, they come relatively
close. In particular, region 6 is almost a perfect overlay for Ameren
Missouri’s boothheel footprint. For this grid, from Table 16, this region
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Fig. 15. Energy Poverty using grid 1 definition for the 6 climate divisions of MO where green, orange, blue and red quadrants represents no risk, expenditure risk, income risk
and double risk categories respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 15
Percentages of the classes for the various regions in Missouri for grid 1 definition.
Regions % No risk % Expenditure risk % Income risk % Double risk Count

1 5.1 89.2 1.3 4.4 278,925
2 9.0 85.8 1.8 3.4 261,490
3 6.8 87.6 1.6 4.0 138,329
4 7.6 86.7 2.0 3.8 187,195
5 4.5 89.6 1.4 4.4 120,281
6 6.4 88.4 1.4 3.8 57,300
has the highest expenditure and double risk percentages in the state.
Region 1 is mostly served by either Ameren (in a portion of 10 counties)
10 
or Evergy (in all but three counties). However, these regions represent
a small share of households served by those two utility companies and
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Fig. 16. Map of F1 Scores of test set prediction for the climatological regions in Missouri using Grid 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 16
Percentages of the classes for the various regions in Missouri using grid 2 definition.
Regions % No risk % Expenditure risk % Income risk % Double risk Count

1 88.8 5.5 0.83 4.6 278,194
2 88.5 6.3 0.53 4.4 260,842
3 88.3 6.1 0.67 4.6 137,909
4 87.8 6.5 0.84 4.7 186,726
5 88.7 5.4 0.86 4.8 120,016
6 83.6 8.6 0.84 6.6 57,111
are a relatively small portion of the geographic composition of the
state. Both companies also cover the urban areas in zones 2 and 3. The
assumption is that these companies’ energy poverty problems may be
the most severe in the urban areas. However, as mentioned previously,
the results suggest otherwise.

The range of the F1 scores for the predicted climatological regions
for grid 2 was close to that of grid 1. Grid 2 had a range of 96.0 to
97.4%. This is a bit lower than grid 1 since grid 1 had less variability
in terms of the double risk classes. That is there was more of a class
imbalance. There were also similarities in the predictability of regions.
For example, regions 1 and 6 had the largest F1 scores for both grids
(see Fig. 18).

5. Future work and conclusion

From the analysis of energy poverty in Missouri for grid 1, the data
set included all of the variables except expenditure as it incurred the
least errors. From the decision trees, the most important feature is the
average annual household income. After tuning the hyperparameters,
the extreme gradient boosting was the best-performing model. Thus,
this method was used for the analysis using the county-level data set.
Using this algorithm, the F1 scores increased from 90.6% of to a range
of 95.5–98.6%. From the NOAA climatological regional runs, the F1
score was the highest for region 1, which coincided with one of the
highest expenditure risk values. For grid 2, where the energy expendi-
ture percentage was derived from the ratio of energy expenditure to the
corresponding household income, the highest class distribution shifted
from expenditure risk to no risk. There was higher class variability
in terms of the double risk category for grid 2, thus less of a class
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imbalance. The F1 scores for grid 2 was a bit lower than grid 1. There
was also similar predictability in the regions for both grids; regions 1
and 6 had the largest F1 scores.

Limitations of this study include data quality of some features of the
county and state-wide datasets. There was a pattern of repeating values
of rows for the primary space heating fuel type. Another limitation is
the lack of data concerning those households under a certain income
threshold, who receive subsidies or waivers of their energy bill. This
could have been factored in this study.

Additional analysis and further investigation will be done using
alternative selection of the features. That is, all of the features in-
cluding percentage energy expenditure excluding the household annual
income. The motivation comes from this dataset having a relatively
high percentage accuracy for both descriptions of the grids using the
decision tree model run. The accuracies were 96.0% and 97.0% for grid
1 and grid 2 respectively. In other analyses, we also intend to investi-
gate similar techniques in the methodology for the dataset, df_MO_B,
which excludes both income and fuel expenditure features as this also
poses an interesting problem. Another point of future research is the
determination of how energy poverty and particularly their counts for
each classification, changes with more recent minimum wages and thus
various income thresholds.

Future work also includes using environmental and geographical
remote sensing data sets as features in the analysis of energy poverty
as done in [9,12]. Such variables include precipitation, temperature,
soil moisture, vegetation (from the Normalized Difference Vegetation
Index (𝑁 𝐷 𝑉 𝐼), fine particulate matter (𝑃 𝑀2.5), travel time to nearest
city and night time lights [9]. Of all the data, the most important
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Fig. 17. Energy Poverty using grid 2 definition for the 6 climate divisions of MO where green, orange, blue and red quadrants represents no risk, expenditure risk, income risk
and double risk categories respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
contributions given by [9] to model predictability came from precip-
itation and 𝑃 𝑀2.5. Those households receiving less precipitation are
experiencing more energy poverty, as there is a positive relationship
between precipitation and per capita GDP in [9]’s study for India.
Such a study could be incorporated for Missouri, which is also heavily
dependent on agricultural income.

The work conducted in this research paper can be utilized by
policy implementers to formulate social programs based on data driven
modeling to ameliorate energy poverty in Missouri. This tool may
12 
be informative for legislative initiatives. In broadly addressing energy
poverty, state legislature can utilize this model to prioritize other types
of state low-income assistance programs especially since household
income is the primary driver of energy poverty using grid 2. It should
be noted that grid 2 should be referred to in policy discussions as it
is derived from a more economically intuitive definition. Also, afford-
ability is of concern at the utility regulator and investor-owned utility
level. Being able to predict energy poverty may aid in targeting energy
efficiency and low-income support programs for those companies.
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Fig. 18. Map of F1 Scores of test set prediction for the climatological regions in
Missouri using Grid 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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