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A B S T R A C T

Study region: Mississippi River Basin.
Study focus: Using daily precipitation records of 769 meteorological stations over the Mississippi
River Basin (MRB), the spatial-temporal variability and trend of nine extreme precipitation
indices were estimated and statistically assessed using the Mann-Kendall test. Factors likely to
influence the spatial pattern and trends of precipitation extremes indices were also checked.
New hydrological insights for the region: The spatial pattern of the extreme precipitation indices
exhibits a southeast to Northwest dipole, with the maximum values recorded over the south-
eastern part of the domain (exception being for Consecutive Dry Days, CDD which shows
otherwise) driven by the southerly moisture transport toward the southeast. The spatial pattern of
the extreme precipitation is controlled by the topography. The results also show that, on average,
almost all the indices (except CDD) exhibit an increasing trend. The total wet day precipitation
exhibits a significant increasing trend. Spatially, most of the significant increasing (decreasing)
trends of the extreme’s precipitation-except CDD- are located over the Upper (South) MRB where
there is a significant sign toward cooling (warming) conditions. This supports the view that
changing climate towards warming (cooling) conditions is significantly affecting precipitations
extremes over the MRB. The relationships between large-scale teleconnections and extreme
precipitation show that Pacific North America significantly increases (decreases) frequency and
intensity indices over the Northwest (southeast) MRB, whereas the Pacific Decadal Oscillation
does increase the frequency and intensity indices over the southeast. El Niño Southern Oscillation
significantly increases the frequency and intensity indices over the entire MRB, with conse-
quences to infrastructure failures, increasing vulnerable populations, risk zones and relocations
populations.
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1. Introduction

Precipitation is one of the important components of the hydrological cycle. In this era of changing climate, the stability of the global
water cycle system has decreased (Yin et al., 2016) and precipitation is expected to change worldwide (Bessaklia et al., 2018; Gao et al.,
2018). Furthermore, global warming has been shown to exacerbate and trigger variations in extreme precipitation (Xiong et al., 2009),
which can result in droughts and floods, considerably impacting local environments, economies (Rosenzweig et al., 2002; Mantua
et al., 2010) and ecosystems (Toreti and Desiato, 2008; Choi et al., 2009). Global changes of extreme climate variables observed in
recent decades can only be accounted for by considering both anthropogenic and natural factors (Alexander et al., 2007). In some
regions, both temperature and precipitation have already increased in response to changes in mean values (Smithson, 2002). It is
widely conceived that as air temperature increases, the water cycling process will accelerate, but the consequences on the behavior of
precipitation amount and intensity vary worldwide.

Throughout the U.S., many findings (Kunkel et al., 1999; Karl and Knight, 1998) claimed that the trend in short duration of extreme
daily precipitation events has been increasing at a rate of 3–8% per decade from 1931 to 1996. However, many studies (Balling and
Goodrich, 2010; Peterson et al., 2013; Anderson et al., 2010, 2015; Griffiths and Bradley, 2007; Durkee et al., 2007; Brown et al., 2010;
Howarth et al., 2019) relying only on the spatial-temporal analysis of the precipitation extreme indices across the U.S. mostly
emphasize on the direction of trends with no further information regarding factors influencing the direction of the observed trends.
Works from Anderson et al., (2015) have concluded that there is an increase in extreme precipitation frequency and intensity
throughout the U.S. and since the last century (Hayhoe et al., 2018) with the increase in temperature alongside the increase in annual
precipitation across most of the northern and eastern U.S. From a set of 774 weather stations spread over the U.S., Anderson et al.,
(2015) found positive trends in annual occurrence of rainfall across most of the U.S. and positive trends in annual intensity and heavy
precipitation events across the Plains and Great Lakes. Karl et al., (1996) found and increasing in the number wet days over the U.S.
much more than would be expected in a stationary climate between 1910 and 1940 and after 1970. However, some of the variability
associated with changes in extreme precipitation events over the Eastern U.S. are related to changing patterns of large-scale tele-
connections, such as the North Atlantic Oscillation (NAO), El Nino southern Oscillation (ENSO), and the Pacific North American
pattern (PNA) (Griffiths and Bradley, 2007). In the same vein, Durkee at al., (2007) suggested that the statistically increasing trends in
the frequency of extreme precipitation events observed over the eastern U.S. are associated with the positive phase of the NAO. Enfield
et al., (2001) argued that the relationship between precipitation and Atlantic Multidecadal Oscillation (AMO) revealed an association

Fig. 1. Topography map of the study domain.
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between the AMO warm phase with less than normal rainfall over the U.S., including Midwestern droughts. Similarly, Balling and
Goodrich, (2010) attributed the spatial-temporal patterns and trend of precipitation intensity in the northeastern U.S. and center
portion of the western U.S. to the influence of the AMO. Additionally, between AMO phases, the interannual pattern of rainfall is
associated with ENSO, and the Mississippi River outflow varies by 10% while the inflow to lake and Florida varies by 40%. Curtis
(2007) showed that the increase in precipitation intensity in Florida and over the Southeastern U.S. is linked to AMO warm phases.
While the interannual fluctuations of rainfall are associated to ENSO, interdecadal fluctuations are associated to the Pacific Decal
Oscillation (PDO) over the southern U.S. while Artic Oscillation (AO) have more impact over the Southeastern U.S. (Higgins et al.,
2007). Maurer and Lettenmaier (2003) have shown the importance of ENSO and AO in the seasonal predictability of runoff over the
Mississippi River Basin (MRB). Over the northeast U.S. (Howarth et al., 2019) a set of 58 weather stations were used to find that the
increasing trend in extreme precipitation events during fall months is fed by tropical moisture leading to moisture surplus over 30% of
the country since 1970 (Karl et al., 1996). Most of those studies considered simple correlation as the tool to diagnose the relationship
between extreme precipitation and large-scale teleconnections. Thus, these influences of large scale atmospheric and oceans tele-
connections are worth considering -removing their mutual interaction to effectively quantify their individual impact- in any study
related to possible causes of climate variability and their impacts on ecosystem functions and services. To the best of our knowledge,
local factors likely to influence the spatial-pattern and the trends of extremes indices such as topography, the land use change (LUC)
and the moisture haven’t been documented enough in current literature. Understanding those factors is of paramount importance for
local development and risk prevention. As the magnitude of global warming vary at regional and temporal scales, it is important to
investigate the variability of extreme precipitation to address adequate responses for hazards and mitigate the negative impact on
agriculture, ecosystems and the economy from a local to global scale.

Although many studies on extreme precipitation have already been conducted over different part of the U.S., few of those studies
have paid particular attention to the spatial variability and trends of extreme precipitation over the MRB (Fig. 1). The MRB drains the
third largest river in the world. The catchment (or drainage) area covers 41% of the Conterminous U.S. and encompasses 31 states
(Kesel et al., 1998, Fig. 1). Economically, the MRB is of national importance because of its significant agricultural and livestock
production. The complex network of dams and levees help move most of the U.S. agricultural products originate from there (Foley
et al., 2004). Nevertheless, the Mississippi River is vulnerable to river flooding, which occurs when the amount of runoff from the
catchment area into a river exceeds the capacity of the channel (van der Wiel et al., 2018). Another cause of extreme flooding events in
the MRB is the anomalously large water vapor transport from the Gulf of Mexico to the continental U.S. (Smith and Baeck, 2015;
Benedict et al., 2019). In addition, the negative impacts of extreme precipitation events over the MRB are worth mentioning. For
instance, many river-flooding with impact on agriculture and buildings, bridges, or dams in the Upper MRB (Wahl et al., 1993), Lower
Mississippi and Ohio River Basins (Smith and Baeck, 2015) were the response to seasonal and longer extreme events and particularly
from heavy precipitation.

Comprehensive analyses of factors such as moisture flux, topography and warming susceptible to influence the spatial structure and
trends of extreme precipitation indices studied here are lacking in the current literature. The idea is to address climatic proxies that
have a direct impact on infrastructure, agriculture, livestock, etc. To that end, the current study seeks to analyze the spatial-temporal
variability of nine extreme’s precipitation indices as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI)
(Table 1) over the MRB and investigate the factors likely to influence its variability. We hope that by doing so, we can enrich the
current state of the knowledge on extreme precipitation over the MRB, identifying possible implications for better decision making.
The paper is organized as follows: Section 2 describes the data and methods used in this study. The results of our findings are presented
in Section 3. The discussion of our results is provided in Section 4 follow by the conclusion in Section 5.

Table 1
List of the nine climate indices used in this study.

Type Indices Name Definition Unit

Intensity
indices

RX1day Maximum 1-day precipitation
amount

Maximum daily rainfall amount. Let RRkj be the daily rainfall amount on day k in the
period j. The maximum daily values for the period j are: RX1dayj = max (RRkj)

mm

RX5day
Maximum consecutive 5-day
precipitation amount

Maximum rainfall for 5-day interval. Let RRkj be the rainfall amount for the 5-day
interval ending k in period j. The maximum 5-day values for the period j are: RX5dayj
= max (RRkj)

mm

SDII Simple daily intensity index
Average rainfall from wet days. Let RRwj be the daily rainfall amount on wet-day,
PRCP ≥ 1 mm in period j. IfW represents number of wet day in j, then: SDIIj = total
precipitation of wet for the period j divided by the number of wet days

mm/
day

PRCPTOT Total wet days precipitation Let RRij be the daily precipitation amount on day i in period j.
PRCPTOT = sum of RRi ≥1 mm during the period j

mm

Frequency
indices

R10mm
Number of heavy precipitation
days

Let RRij be the daily precipitation amount on day i in period j. Count the number of
days where RRij ≥ 10 mm days

R20mm
Number of very heavy
precipitation days

Let RRij be the daily precipitation amount on day i in period j. Count the number of
days where RRij ≥ 20 mm days

RR1
Number of wet days
precipitation

counts of days when precipitation ≥1 mm days

Duration
indices

CDD Consecutive dry days or dry
spell

Maximum number of consecutive days with precipitation <1 mm days

CWD
Consecutive wet days or wet
spell Maximum number of days with precipitation ≥ 1 mm days
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2. Data and methods

2.1. Data

2.1.1. Precipitation gauge observations
Daily precipitation records were obtained from the National Oceanic and Atmospheric Agency (NOAA) Global Historical Clima-

tology Network -Daily (GHCN-DAILY) database for the period of 1988–2017 (Menne et al., 2012). This database was designed to fulfill
the need for daily climate data around the world and for the wide variety of applications including climate analysis and monitoring
studies. Quality control checks are routinely applied to the dataset to avoid inconsistency in the data timeseries. We retrieved the daily
data at 1240 locations within the study area (see Fig. 1 for locations). The daily data come from at least 12 databases as described in
Menne et al., (2012, see their Table 2). No attempts were made to fill the missing values. To ensure the quality of the analyses and
consider a daily precipitation timeseries as complete, we first consider stations that record at least 95 % of data (Klein Tank and
Können, 2003) per year for the period 1988–2017. Then, with the aim of detecting inhomogeneous series, three homogeneity tests
were applied to the weather stations’ precipitations time series, namely the Standard Normal Homogeneity Test (SNHT) (Alex-
andersson, 1986), Buishand Range Test (Buishand, 1982), and Pettitt Test (Pettitt, 1979). These homogeneity tests are based on
different statistical principles. They are therefore complementary and have the advantage of being able to detect inhomogeneity at
different levels of the precipitation time series. Only the stations that passed the three-homogeneity tests were considered. In summary,
for a total of 1240 stations, 769 stations were chosen for the continuity and the homogeneity of their data records during the period of
1988–2017.

2.1.2. Atmospheric and oceanic teleconnections index
Large-scale teleconnection patterns may influence many facets of precipitation in weather stations (Cullen and deMenocal, 2000;

Donat et al., 2013; Trenberth et al., 2003). These teleconnections impact rainfall patterns through the changing of the planetary wave
in a various times scale. Those teleconnections include ENSO (Higgins et al., 2007) with impact on interannual fluctuations of pre-
cipitations, while PDO and AO may play a major role in decadal or interdecadal fluctuation on rainfall intensity. Several authors
(Bradley, 2007; Durkee et al., 2007) have also investigated the impact of Pacific North American (PNA), AO and AMO on precipitation
intensity. This study utilizes seven large teleconnections index including: (1) the unsmoothed and detrended AMO index (Enfield et al.,
2001); (2) the PNA index, which is known as a natural mode of climate variability and is one of the most important modes of low
frequency variability in the Northern hemisphere extra tropics; (3) the ENSO index, which is computed by removing the mean to the
area averaged sea surface temperature (SST) from 5S-5 N & 170–120 W (Rayner et al., 2003); (4) the AO index (Thompson and
Wallace, 1998; 2001), which is known as a large scale mode of climate variability and also referred to as the northern hemisphere
annular mode, has a wide range of influences on weather in north America and is characterized by opposing fluctuations in barometric
pressure over the polar region and midlatitudes; (5) the SO index, which is a standardized index based on the observed Sea Level
Pressure (SLP) differences between Tahiti and Darwin (Ropelewski and Jones, 1987); (6) the PDO index, which is often described as a
long-lived El Niño-like pattern of Pacific climate variability (Zhang et al., 1997; Mantua et al., 1997); and (7) the NAO index (Barnston
and Livezey, 1987), which is based on the surface sea-level pressure difference between the Subtropical High and the Subpolar Low.
NAO is a primary mode of atmospheric variability over the Atlantic Ocean and plays an important role in climate variability over
eastern North America (Durkee at al., 2007). The monthly timeseries of these seven modes of variability are extracted from NOAA for
the period of 1988–2017, and their interannual variability is shown in Fig. 2. Note that for the ENSO index, we considered the Nino3.4
index (Rayner et al., 2003). The annual values for each index are obtained by computing the 12-month average for each index for a
given year. While PDO and Nino3.4 have the same interannual variability, one interesting observation is the anti-correlation between
PDO and SOI, and between SOI and Nino 3.4. The variability of the AMO shows a negative phase from 1988 to 1995, and a positive
phase from 1997 to 2017. Also, the variability of the AO is almost close to that of the NAO with a high positive significant correlation
(Lebedeva et al., 2019). PNA varies almost from year to year, with a low amplitude that generally does not exceed +1 in the positive
phase, or − 1 in the negative phase.

Table 2
Mean annual values and standard deviation of extreme precipitation. The values in bracket are the normalized
standard deviation.

Precipitation Indices Mean Annual values Standard deviation

SDII 9.88 0.35 (0.017)
PRCPTOT 842.24 66.34 (3.29)
RX1day 61.67 3.34 (0.16)
RX5day 95.96 6.52 (0.32)
R10 26.81 2.11(0.10)
R20 11.45 1.12 (0.05)
RR1 85.07 5 (0.24)
CDD 27.79 2.42 (0.12)
CWD 5.28 0.34 (0.01)
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2.2. Methods

2.2.1. Precipitation indices
In this study a set of nine extreme climate indices (Table 1) are computed from daily precipitation datasets to assess the precipi-

tation indices. These precipitation indices have already been used in many climate studies (van den Besselaar et al., 2012; Sheikh et al.,
2014; Tian et al., 2016; Li et al., 2017; Frich et al., 2002; Klein Tank et al., 2002). Those indices are amongst the 27 extreme climate
indices that have been developed and are highly recommended by the ETCCDI (Peterson et al., 2001; Zhang et al., 2011). The indices
under consideration in this study can be divided into three categories: intensity, frequency, and duration (Quan et al., 2020) (Table 1).
The intensity indices are the maximum 5-days precipitation amount (Rx5day), the maximum 1-day precipitation (Rx1day), the simple
daily intensity index (SDII), and the annual total wet day precipitation amount (PRCPTOT). Note that wet days are days with rainfall
amount greater than 1 mm. The frequency indices are the number of heavy precipitation days (R10mm), the number of very heavy
precipitation days (R20mm) and the number of wet days (RR1) (R>1 mm). Here, R represents the precipitation event, and the number
is the minimum intensity of the corresponding event. The duration indices are the consecutive dry day (CDD) and consecutive wet day
(CWD) spells.

2.2.2. Precipitation concentration index
Prior to analyzing the extreme precipitation indices, the temporal distribution of precipitation was checked. To that end, the

precipitation concentration index (PCI) (Oliver, 1980) was used. PCI is a powerful indicator of the spatial-temporal rainfall regularity
and is important to assessing the seasonal or annual rainfall variability that is an essential feature for water and natural resources
management (Zhang et al., 2019). PCI is also a useful indicator of rainfall concentration, floods risk prediction or droughts, and it is
calculated on an annual scale according to Eq. (1) (de Luis et al., 2011):

PCIannual =

∑12

i=1
P2i

(
∑12

i=1
Pi)2

× 100 (1)

where Pi is the monthly precipitation calculated for each rainfall data. According to Oliver (1980), PCI <10 characterize a uniform
precipitation distribution (low precipitation concentration); 11<PCI<15 represent a moderate precipitation distribution; 16<PCI<20
denote irregular distribution and PCI> 20 indicate a strong irregularity. Values that range between 16 and 20 represent irregular
distribution and PCI >20 characterize a strong irregularity of precipitation distribution.

2.2.3. Mann-Kendall test
One of the techniques of detecting trends in the fields of climatic and hydrological studies is the Man-Kendall trend test (Mann,

1945; Kendall, 1955), which requires data to be independent and randomly distributed. It is a non-parametric test, used to identify
monotonic trend and has been widely applied in many climate studies (Zhang et al., 2009; Li et al., 2019; Quan et al., 2020; Shawul and
Chakma, 2020; Latif et al., 2021). The null hypothesis in the Mann-Kendall test considers that there are no trends in the time series,
whereas the alternative hypotheses states there is a significant trend in the dataset (Shawul and Chakma, 2020). Let X1, X2, X3 …, Xn
represent n data points where X represent the data point at time i and n is data length. The statistical formula of the Mann-Kendall test
is as follows:

Fig. 2. Interannual variability of the large-scale teleconnections index.
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S =
∑n− 1

i=1

∑n

k=i+1

sgn(xk − xi) (3)

where

sgn(xk − xi) =

⎧
⎨

⎩

+1 if xk − xi > 0
0 if xk − xi = 0
− 1 if xk − xi < 0

(4)

A positive value of S is an indication of an increasing trend, and a negative value of S indicates a decreasing trend. Furthermore, for
a sample size that is greater than eight, the statistic S is close to a normal distribution, and the statistic is computed as follows (Zamani
et al., 2017; Li et al., 2019):

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ if S < 0

0 if S = 0
S+ 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ if S > 0

(5)

where var(S) is the variance of S which can be calculated according to the following equation (Zamani et al., 2017; Li et al., 2019):

var(S) = n(n − 1)(2n+5)/18 (6)

Fig. 3. (a) Spatial distribution of the total annual rainfall (mm/year) and (b) annual cycle of precipitation (mm/month) over the MRB from 729
weather stations for the period 1988–2017. (c) Spatial distribution of precipitation concentration index for the 769 weather stations. (d) Rela-
tionship between station’s elevation and Annual Maximum Daily (AMD) rainfall for each of the 769 weather stations used in this study. Red, blue,
and green lines are linear trends between mean AMD rainfall and elevation range between 0 and 500 m, 500–1000 m and > 1000 m respectively.
The linear regression equation for each of the above cited lines is indicated with the same color as the corresponding line. The Spearman’s rank
correlation coefficient between mean AMD rainfall and station’s elevation at two-sided 95 % level is indicated in black bold.
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In the bilateral test, if |Z| ≥ Z1− (p/2) (|Z| ≤ Z(p/2)) at the p significant level, the null hypothesis Ho is rejected (accepted). Therefore,
under the given confidence level of p, the time series show an upward trend for Z > 0 or downward trend for Z < 0. Specifically for this
study, |Z| ≥ 1.96 represent the trend of the time series at 95 % confidence level. Given that Mann-Kendall tests results can be
influenced by autocorrelation, and that positive autocorrelation might cause the trends test to be rejected, the Hamed and Rao (Hamed
and Rao, 1998) method to trends analysis which address serial autocorrelation issues was applied. They suggested the variance
correction approach to improve trend analysis. In this approach (see details in Hamed and Rao, 1998) a modified variance is calculated
based on the rank of the observations. The rank of the observations is calculated after subtracting a non-parametric trend estimator
(Sen, 1968) and only the significant rank are used to calculate the modified variance.

2.2.4. Sen’s slope
The magnitude of change and direction (change per unit time) were calculated using Sen’s slope approach (Sen,1968). In

computational techniques, the Sen slope estimates of N pairs of data are based on the following equation:

Qi =
xj − xk
j − k

for i = 1,…,N, (7)

where xkandxj are the data values at times j and k (j>k), respectively. If there is only one data in each time period, thenN=
n(n− 1)

2 where
n is the number of time periods. If there are multiple observations in one or more time periods, N <

n(n− 1)
2 , where n is the total number

of observations. The values of Qi are ranked from smallest to largest and the Sen’s slope estimator is computed as follow:

Qmed =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q(
N+1
2

) if N is odd

Q(
N
2

) + Q(
N+1
2

)

2
if N is even

(8)

Finally, in this study, the two-sided test is employed to test the Qmed at 95 % confidence interval and the true slope may be acquired
using nonparametric test.

3. Results

3.1. Rainfall characteristics over the Mississippi River basin

3.1.1. Mean spatial pattern and seasonal cycle
The spatial distribution of rainfall exhibits a southeast to northwest gradient, with the largest amount of rainfall recorded over the

southeast area of the basin and the lower rainfall amounts recorded over the northwestern part of the domain (Fig. 3a). The southeast
and northeast of the MRB, which record the largest amount of rainfall, are known to lack mountain barriers and are exposed to Arctic
cold air masses in winter and moist air mass from the Gulf of Mexico in Summer (Almazroui et al., 2021). A few stations with high
amount of rainfall are observed at the western borders of Montana. The seasonal variability (Fig. 3b) of rainfall over the MRB is
featured by a unimodal cycle with the rainfall peaks of about 100 mm/month in May and the minimum values of about 50 mm
recorded in February.

The PCI calculated on the annual scales vary considerably throughout the MRB (Fig. 3c). The annual and seasonal distribution of
PCI shows a Southeast to Northwest dipole, with the lowest value of 8.5 located at the Southeastern part of the study area whereas the
Northwestern part of the domain exhibits PCI values above 10. The characteristics of the distribution of precipitation over the study
domain exhibits both a perfect uniformity of precipitation (PCI<9) (de Luis., 2011) and a moderate precipitation distribution
(9<PCI<15) at the annual scale. The spatial distribution of PCI does not match with the spatial distribution of the rainfall (Fig. 3a). In
fact, areas with a relatively high amount of rainfall are considered wet areas and are characterized by a perfect PCI distribution
whereas areas with low rainfall amount exhibits a moderate precipitation distribution.

3.1.2. Annual maximum daily rainfall
The extreme values in the precipitation data are most of the time related to the occurrences of floods, particularly when they are the

main reason for vast water rise (Dušek et al., 2017). The maximum daily rainfall is a parameter that is commonly used to characterize
the extreme conditions associated with rainfall intensities and potential flood regions (Shawul and Chakma, 2020). In this study, the
AMD rainfall series are analyzed for the 769 weather stations throughout the study area and cover the full range of elevation from
lowland/southwestern coastal areas to highland for the period of 1988–2017.

To quantitatively assess the relative dependance between the AMD rainfall and the station’s elevation, we calculated the Spearman
rank correlation coefficient and performed a two-side t-test at 95 % significance level. The highest mean value of AMD rainfall is
126 mm and is recorded for a station located at sea level. The relationship between the mean AMD rainfall and the elevation behaves in
a nonlinear manner (Fig. 3c). However, the mean AMD rainfall decreases as the elevation increases, but the decreasing rate differs for
elevation range between 0 and 500 m, 500 m-1000 m, and elevation greater than 1000 m. For instance, for elevation ranges between
0 and 500 m (500 m-1000 m), the decreasing rate of mean AMD rainfall is − 8 mm/100 m (-4 mm/100 m). Likewise, for elevation
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greater than 1000 m, the decreasing rate of mean AMD rainfall is quite small, − 4 mm/100 m. Climate stations located at the altitudes
below 500 m mostly exhibit the higher mean values of AMD rainfall (>60 mm) compared to those located at elevations greater than
500 m. The correlation coefficient between the station’s elevation and mean AMD rainfall is strong and significant, r= − 0.832. The
mean AMD rainfall exhibits significant negatives correlation with all the elevation ranges, that is r= − 0.56, − 0.41 and − 0.33 for
elevation range between 0 and 500 m, 500 m-1000 m and>1000 m, respectively. This shows that high amount of precipitationmay be
mostly due to moist air mass from the Gulf of Mexico (Bishop et al., 2018).

3.2. Temporal and spatial analysis of extreme precipitation

The spatiotemporal patterns of precipitation and precipitation-related extremes are considered as the key factors influencing
natural ecosystems and human society (Rosenzweig et al., 2002). Thus, the spatial and interannual variability, as well as the trends of
the extreme precipitation over the MRB are described in this section.

3.2.1. Temporal evolution
The interannual variability of each of the nine precipitation indices is displayed in Fig. 4 together with slopes that show the linear

trends. Each of the precipitation indices is performed for each of the 769 selected weather stations, then, the mean over the study
domain is obtained by performing the arithmetical averaging of the precipitation indices obtained from individual long-term stations.
The slopes of the significant trends during the period 1988–2017 are displayed in bold. The average value of SDII is 9.88 mm/day with
less variability (standard deviation=0.35 mm/day) (Table 2). The SDII (Fig. 4a) shows a very slight (magnitude = 0.01 mm/year)

Fig. 4. Temporal variability of the spatially averaged of the nine precipitation indices from the 769 stations for the period 1988–2017: a) SDII, b)
PRCPTOT, c) RX1day, d) RX5day, e) RR1, f) R10, g) R20, h) CDD and i) CWD. The solid black lines indicate the trends according to Man-Kendall test
at 95 % level. The slopes of the significant trends are indicated in bold.
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increasing trend even though not significant according to Man-Kendall test (Mann, 1945; Kendall, 1955). The minimum value of daily
precipitation intensity which is about 9 mm/day is observed in 2012, and the maximum which is about ~10.6 mm/day is recorded in
2015. The observed seasonal cycle (Supplemental Information (SI) Fig. S1b) of the SDII shows a peak in September, while the wettest
month is found to be May with maximum monthly precipitation being about 100 mm (SI, Fig. S1c). The September peak of the SDII is
due to abnormally high precipitation intensity observed in September (not shown). In fact, during September, the above average
rainfall that fell across the southeastern U.S. are the response to increased southerly moisture transport from Gulf of Mexico, which is
almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high
(Bishop et al., 2019). Those winds anomalies enhance water vapor flux over the southeastern U.S., causing an increase in precipitation
intensity.

The PRCPTOT (Fig. 5b) shows a significant (p<0.05) increasing trend of 1.04 mm/year. This increase in annual rainfall has also
been shown by Balling and Goodrich (2010) over the U.S. The maximum value of PRCPTOT over theMRB is about 950 mm/year and is
recorded in 2015 during the warm ENSO and the minimum observed value of 670 mm in 1988. As observed with the PRCPTOT, the
RX1day (Fig. 4c), and the RX5day (Fig. 4d) show their peak values in 2015, and their minimum is recorded in 2012. The RX1day and
the RX5day exhibit an increasing trend; however, they are not significant. The average RX1day (RX5day) is 61.65 mm (95.96 mm),
and its standard deviation is about 3.34 mm (6.52 mm). Similar to that of the PRCPTOT, the seasonal variability of RX1day (SI,
Fig. S1d) and that of RX5day (SI, Fig. S1e) are unimodal with the maximum values being 32 mm and 50 mm respectively, recorded in
May. All the intensity indices (Table 1) show their minimum values in 2012, whereas their maximums are recorded in 2008 (Fig. 4c-d)
and the year 2015 (Fig. 4a-b).

The variability of the number of wet days (RR1), the number of heavy (R10mm), and the number of very heavy (R20mm) pre-
cipitation days are also analyzed. The RR1 (Fig. 4e) shows an increasing but non-significant trend (p >0.05). The minimum and
maximum values of 70 days and 94 days are recorded in 1988 and 1993, respectively. The annual mean of the RR1 is 85.07 days (±5
days, one standard deviation). The seasonal cycle of RR1 shows a single peak in May (SI, Fig. S1a) with monthly maximum RR1 being
9.5 days. R10mm (Fig. 4f) and R20mm (Fig. 4g) both show an increasing trend; however, it is not significant. Their mean annual values

Fig. 5. Spatial pattern of (a) SDII, (b) PRCPTOT, (c) RX1day, (d) RX5day, (e) RR1, (f) R10, (g) R20, (h) CDD, and (i) CWD over the MRB for each of
the 769 weather stations for the period 1988–2017. Each of the precipitation indices is defined in Table 1.
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are 26.81 days and 11.45 days, respectively, with less variability (Table 2). Their minimum values are observed in 1988 and the
maximum values in the year 2015.

Regarding the dry and wet spell, the length of the dry spell decreases slightly whereas the length of the wet spell behaves otherwise,
but their trends are not significant (Fig. 5h and i). The annual average length of dry (wet) spell is 27.79 (5.28) days. The seasonal cycle
of dry spell shows a double peak. The first peak of about 14 days is observed in January and the second of about 15 days is observed in
October (Fig. S1f). For the wet spell, the single maximum of about 3 days is observed in May.

Overall, all the indices exhibit a nonsignificant trend with the exception being PRCPTOT (Fig. 5b). The magnitude of the trend of
indices doesn’t exceed 0.07 unit per year, except PRCPTOT, RX1day, and RX5day, whose magnitudes are respectively 1.02, 0.20, and
0.26 mm/year. Seven out of nine indices show their maximum values in 2015, recognized as a year that experienced a strong El Niño
event (Nigam and Sengupta, 2021), which led to higher precipitation over the southern U.S. The seasonal cycle of the indices exhibits a
unimodal cycle with a single peak in May, except for the dry spell and precipitation intensity. The seasonal cycle of the year-to-year

Fig. 6. Spatial distribution of the Mann-Kendall trends of extreme precipitation over MRB for the period 1988–2017; a) SDII, b) PRCPTOT, c)
RX1day, d) RX5day, e) RR1, f) R10, g) R20, h) CDD and i) CWD. Upward (downward) triangles denote increasing (decreasing) trends, and solid
triangles denote significant trends at 95 % level. The range of the slope on each panel is represented by S. The value of the slope depends on each
station and the significance of the slope is not linked to a particular range. Locations with no trend are not shown. Only 50 % of locations with non-
significant trends are shown.
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(not shown) variability shows abnormally high RR1, PRCPTOT, RX1day, RX5day, R10 mm, and R20 mm in October 2009. Indeed,
2009 is ranked one the wettest years with extreme precipitation in the U.S., particularly over the southeast and eastern U.S. during
October in response to hurricane and severe storms activities over the Southeast (NOAA National Centers for Environmental Infor-
mation, Monthly National Climate Report for Annual 2009, from https://www.ncei.noaa.gov/access/monitoring/monthly-report/
national/200913, accessed 02/11/2023).

3.2.2. Spatial distribution of extreme precipitation and trends
The spatial distribution of all the precipitation indices (Fig. 5) illustrates a relative same similarity. The highest values are observed

in the southern part where precipitation exhibits perfect uniformity (Fig. 3d) and the lowest values are found in the northwestern part
of the MRB, except for CDD (Fig. 5h) and CWD (Fig. 5i) which show different spatial patterns. The lowest values of the CDD are
observed over the Northeast Ohio river basin whereas the higher values are found in the western MRB (Fig. 5h). The spatial pattern of
the CWD (Fig. 5i) exhibits an almost constant value (5 days) throughout the MRB except in the northwestern borders of the domain.

The values of SDII and PRCPTOT range between 5 and 20 mm/day and 250–2000 mm/year, respectively (Fig. 5a-b). The highest
values of the SDII (PRCPTOT) are observed in the lower MRB. The northwestern part of the Missouri River Basin and western Arkansas
show the lowest values with the indices decreasing from southeast to the northwest. The spatial distributions of the trend analyses for
each precipitation indices are presented in Fig. 6. For the SDII, 54 stations show significant increasing trend whereas 26 stations exhibit
otherwise (Fig. 6a). For the PRCPTOT (Fig. 6b), 26 stations show a significant increasing trend and only three show a significant
decreasing trend which may justify the interannual significant increasing trend of PRCPTOT (Fig. 5b). The decreasing trends of the
total precipitation are mostly located over the south of the MRB where SDII also depicts decreasing tendency. The Upper MRB and the
Missouri River Basin are experiencing increasing trends whereas the northwestern borders of the Missouri River basin and southeast of
Ohio River Basin are experiencing decreasing tendency in PRCPTOT in accordance with the decreasing trend of precipitation intensity.

The RX1day (Fig. 5c) and RX5day (Fig. 5d) have similar patterns to those of the PRCPTOT and SDII. The values of the RX1day
(RX5day) range between (20–140 mm) 50–200 mm. For RX1day (RX5day), 32 (24) stations across the MRB show significant positive
trend, and 5 (5) stations show significant negative trend (Fig. 6c-d). Most of the stations showing increasing trends are located over the
central MRB and to a lesser extent over the northeast where they are mixed with stations experiencing decreasing trend (Fig. 6c & d).

The number of wet days (RR1) (Fig. 5e) ranges from 40 to 180 days. The highest numbers of RR1 are found in northeast Ohio River
Basin and for some stations in the western borders of Missouri River Basin. Nevertheless, the distribution depicts a west to east
gradient, with the western part experiencing the lower number of wet days. The spatial distribution of the trend of RR1 (Fig. 6e) shows
that stations with significant decreasing trend are mostly located over south (i.e., lower Mississippi, Red and southeast Ohio River
Basins) whereas those with increasing trend are at the northern MRB and at the northeast Ohio River Basin. R10mm (Fig. 5f) and
R20mm (Fig. 5g) show the same spatial distribution but differ in intensity. For instance, their values vary between 10 and 70 days and
4–30 days for R10 mm and R20mm respectively. In contrast, almost all the stations with significant increasing trends in heavy (Fig. 6f)

Fig. 7. Station elevations over the MRB. Elevations are separated into three categories. Elevations below 500 m (black dots), elevations range
between 500 and 1500 m (blue dots) and elevations above 1500 m (red dots).
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and very heavy (Fig. 6g) precipitation are located over the Missouri, Upper Mississippi, and Ohio River Basins. Decreasing trends are
mostly over the Arkansas River Basin, Lower MRB and Tennessee Region.

Drier conditions as indicated by dry spell duration ranges from 15 to 65 days and show and east to west gradient (Fig. 5h). Most of
the stations with significant decreasing trends are in the northern Missouri River Basin, the Upper MRB, and the northeast Ohio River
Basin. Stations with increasing trends are confined to the lower MRB (Fig. 6h).

Unlike dry spells, wet spells (Fig. 5i) show almost a constant spatial pattern across the MRB with duration not exceeding 14 days. In
fact, almost all the stations show length of CWD below six days with the exception of a few stations located in the western borders of the
domain where the maximum number of cumulative wet days reaches 13 (Fig. 5i). The number of stations recording significant wet
spell represents only 5.20 % of the total weather stations considered. That is, 40 stations show a significant trend of wet spells, of which
35 stations show significant positive trend and five stations show significant negative trends (Fig. 6i). Overall, the results reveal
interesting details such as: (1) a west to east gradient characterizing the spatial pattern of the intensity and frequency indices (Table 1);
(2) an east to west gradient is the main feature of the spatial distribution of the dry spell; (3) the spatial distribution of the wet spell is
flat with the duration not exceeding six days except for a few stations in the western borders of the domain i.e., western Montana; (4)
the lower Mississippi, Red, and south Ohio River Basins are experiencing decreases in SDII, PRCPTOT and also in number of wet days;
(5) the frequency of heavy and very heavy precipitation is decreasing over lower Mississippi, Red, and south Ohio River Basins and is
increasing over the Upper Mississippi, Missouri, and north east Ohio River Basins; (6) Louisiana is experiencing an increasing tendency
in the duration of dry spells; (7) southeast Ohio River Basin and some stations over the Upper MRB show significant increasing trend in
the duration of wet spell; and (8) most part of the domain does show no trend in the duration of wet spells.

3.3. Factors influencing precipitation indices and trends

3.3.1. Elevation dependance
The spatial patterns of the extreme precipitation studied here are also controlled by the pattern of surface elevation. For instance,

above 500 m of high (Fig. 7), the intensity indices (Table 1) are weak or diminish considerably, however there is a persistent high
amount of PRCPTOT (Fig. 5b) particularly over the western border of the domain. Regarding the frequency indices (Table 1), their
values are low above 500 m with the exception being for the number of wet days whose maximum values are shifted to the North Ohio
basin and to the western border of Missouri River basin (Fig. 5e) where elevation is greater than 1500 m (Fig. 7). This indicates another
process that may come into play and deserves to be discussed in section 6. Regarding the duration indices, dry spells (Fig. 5h) are
mostly longer for elevation between 500 m and 1500 m whereas wet spell (Fig. 5i) seems to be longer above 1500 m.

To quantitatively evaluate the interdependence of precipitation indices with the topography, the spearman correlation coefficients
are calculated at 95 % level between each precipitation index and elevation (Table 3, Fig. S2). At first glance, the extreme indices are
strongly correlated with the elevation, especially elevation below 1500 m (Fig S2, Table 3). Below 1500 m, the indices are significantly
negatively (except CDD, r=0.54) correlated with the elevation exhibiting a rapid decreasing in indices as the elevation increases.
Similarly, the slope (Sen’s Slope) also decreases with the elevation (Fig. S3). Above 1500 m, since the number of wet days is signif-
icantly increasing with the elevation (r=0.66, Fig. S2, Table 3), this has a significant impact on PRCPTOT, the R10mm and the length of
wet spells (CWD) which also increase with correlation being, 0.54, 0.50, 0.64 respectively (Fig. S2, Table 3). As the length of wet spells
is increasing with elevation, it thus decreases the length of dry spells. The impact of increasing number of wet days on very heavy
rainfall above 1500 m is noticeable, but not significant. This imply that, the low elevated areas are more susceptible to flooding
following the damage of dams and dikes due to extreme rainfall.

Over the entire MRB, there are no significant temporal trends except for PRCPTOT (Fig. 4) as indicated in section 4.1. Because the

Table 3
Spearman correlation coefficient between precipitation index and station elevation.

Precipitation indices Elevation (m) Correlation

SDII
≤ 1500 − 0.74*
1500–3500 − 0.07

PRCPTOT
≤ 1500 − 0.75*
1500–3500 0.54*

RX1day ≤ 1500 − 0.78*
1500–3500 − 0.15

RX5day
≤ 1500 − 0.78*
1500–3500 0.14

R10mm
≤ 1500 − 0.72*
1500–3500 0.50*

R20mm
≤ 1500 − 0.79*
1500–3500 0.18

RR1 ≤ 1500 − 0.53*
1500–3500 0.66*

CDD
≤ 1500 0.54*
1500–3500 − 0.50

CWD
≤ 1500 − 0.50*
1500–3500 0.64*

* Indicates significant correlation at 95 % level (p<0.05).
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spatial pattern of the precipitation indices is controlled by the elevation, the temporal trends of the extreme are analyses in three
subdomains (Fig. 7) to evaluate the influence of topography. However, we couldn’t find any significant trends over the subdomains,
except for RX1day and CWD over the area with elevation below 500 m (not shown).

3.3.2. Moisture flux
To further investigate the potential divers of extreme precipitation, the mean vertically integrated horizontal moisture flux from the

surface to 850 hPa expressed as:

Total mositure flux = g− 1
∫ 850hPa

surface
qv dp (9)

is calculated using monthly ERA5 dataset from 1988 to 2017. Here g is the gravitational acceleration (m.s− 2), v is the horizontal wind
vector (m.s− 1), q is the specific humidity (g.kg− 1) and p is pressure (hPa). The result is shown in Fig. 8. There is a good agreement
between the pattern of moisture flux and that of the annual total wet day (Fig. 5b). The south to northeastern part -encompassing
Lower Mississippi, Tennessee and Ohio region- is fed by the southeasterly to westerly tropical winds over the southern part of the MRB
which increases the local moisture with impact on precipitation. Prior work has shown that over the U.S., most of the increasing trends
in total annual precipitation mostly come from the Eastern U.S. due to the increasing trends of southerly winds which transport
moisture from the Gulf of Mexico toward the southeastern and Eastern part of the MRB (Bishop et al., 2019). Since the PRCPTOT is
highly correlated (Fig. S4) with other indices (except CDD), we therefore conclude that any change in PRCPTOT is likely to reflect on
extreme precipitation.

3.3.3. Dependance to temperature
It has been shown that temperature is increasing in the U.S. since the last four decades and the consequences on precipitation vary

from season to season (Shenoy et al., 2022). With the aim to understand the spatial distribution of the trend of extremes precipitation
(Fig. 6), the spatial distribution of the mean, maximum and minimum temperature trends from Climatic Research Unit (CRU) for the
period 1988–2016 is shown in Fig. 9. The modifiedMan Kendall trends test (Hamed and Rao, 1998) is applied on each pixel to evaluate
the trend. Fig. 9 shows that almost all part of the MRB (except North Missouri region with is experiencing decreasing in temperature
components) is experiencing an increasing in mean temperature (Fig. 9a) and minimum temperature (Fig. 9b), with most of the
significant trends located over the southern part of the domain encompassing, Lower Mississippi, Tennessee, Arkansas and south of
Missouri region. The Arkansas region and Lower Mississippi are experiencing a rapid increase in maximum temperature.

Decreasing trends in extreme precipitation indices such as PRCPTOT, RR1, R10mm, and R20mm are found mostly where the
temperature components are significantly increasing. In the same vein, over the northern part where temperature components show
decreasing trends-even though not significant- previous cited indices are showing evidence of significant increasing trends. However,
the length of dry and wet spells is likely to be more tied to the trend of maximum temperature. Over, the Northeast Ohio river basin,
which is experiencing non-significant decreasing in maximum temperature, there is an increasing (decreasing) tendency of the length
of wet (dry) spells. Overall, the increasing in temperature is likely to increase the dry spells and vice versa. Though, the spatial pattern
of the trends of extreme precipitation indices cannot be totally explained by the pattern of temperature, pointing to other factors that
may play a significant role.

Fig. 8. The vertically integrated averaged moisture flux from ERA5 data for the period 1988–2017.
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Fig. 9. Spatial trend of the temperature components from CRU data for the period 1988–2016. (a) mean temperature, (b) maximum temperature
and (c) minimum temperature. The magnitude of the trend is calculated using Sen slope approach described in Section 2.2.4. The black dots indicate
areas with significant trends at 95 % level.

Fig. 10. Spearman partial correlation between precipitation indices and AMO for the period 1988–2017. Blue (red) up (down) triangles indicate
positive (negative) significant correlations. Blue (red) circles indicate positive (negative) non-significant correlations. Results are valid on annual
scale at 95 % level of significance. Only 50 % of non-significant correlation are shown.
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3.3.4. Large-scale patterns of atmospheric and oceanic circulation
To determine if the temporal evolution or spatial pattern of the trends of extreme precipitation (Table 1) over the MRB are related

to any sources of interannual or interdecadal variability, the associated relationship between large scale modes of variability and
precipitation indices over the study area is investigated through the partial correlation analysis between the regional average of the
precipitation indices and seven modes of variability described in Section 2.1.2 for the period 1988–2017. The partial correlation (see
details in Wang, 2013) is applied on each teleconnection index to take away the influence of the remaining six teleconnections. The
results presented in Fig. S7 show the average values of the partial correlation between yearly timeseries of the stations that exhibit
positive and negative correlations as well as the significance of the correlations.

Overall, none of the large-scale modes of variability on average shows a strong correlation with extreme precipitations over the
whole MRB. The average values of the correlation for stations that exhibit significant (non-significant) relationships between extreme
precipitation and each mode of variability vary between − 0.5 and 0.5 (-0.2 and 0.2) (Fig. S7). To assess the net effect of each mode of
low frequency variability over the domain, we calculated the mean value of each of the precipitation indices by averaging the 769
stations to obtain a single time series, then we ran the Spearman partial correlation between precipitation indices and each mode of
variability at 95 % level. It is worth mentioning that the correlations are weak. Also, none of the correlations’ coefficients between the
indices and large-scale teleconnections is significant (Fig. S7, red line) for the entire domain. However, the strength of the links be-
tween teleconnections and precipitation indices varies from to point-to-point location. For instance, AMO is generally non significantly

Fig. 11. As Fig. 10 but between precipitation indices and North Atlantic Oscillation.
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correlated with intensity indices over most part of the domain (Fig. 10a-c). However, significant positive correlations are typically over
the Upper Mississippi and Northeast Ohio river basin whereas the western and southern part is mostly negatively correlated with AMO
particularly the PRCPTOT (Fig. 10b). The negative relationship between SDII and AMO is shown for stations located in the Red River
basin, and northwestern border of Missouri river basin. Consistent with Enfield et al., (2001), a positive relationship with SDII is noted
for southern Louisiana and southeastern and Upper Mississippi. This positive relationship is likely due to an increase in hurricane
activity that affected Florida and the coastal southeastern U.S. (Curtis, 2007) as the AMO warm phase begin again in 1995 with a
general increase of precipitation in the U.S. (Balling and Goodrich, 2010). For RX1day (RX5day) (Fig. 10c-d), a positive relationship
with AMO is observed in the south and north Ohio river basin, the north Upper MRB, and at the northwestern borders of Montana.
Negative relationships are mostly found in North Dakota, Montana, and in the northern part of Louisiana (Fig. 10c-d). The relationship
with frequency indices (Table 1) shows negative significant correlations at the southern part of the domain encompassing Ohio,
Arkansas, Red, southern Missouri, and the lower MRB with an exception being for some stations located at Oklahoma state which show
otherwise. Positive relationships between frequency indices (Table 1) and AMO are mostly shown by stations at the northern part of
the Upper Mississippi and northeastern part of the domain (Fig. 10e-g). As AMO decreases the frequency of heavy and very heavy
precipitation over the lower MRB and western part of the domain, it conversely increases the length of dry spells over the
above-mentioned locations (Fig. 10h). Several studies (Sutton and Hodson, 2005; Enfield et al., 2001) have reported that drought over
North America is related to the AMO warm phase in response to reduced rainfall due to low pressure anomalies. For wet spells

Fig. 12. As Fig. 10 but between extreme precipitation and El Nino Southern Oscillation.
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(Fig. 10i), stations located in the northeast Ohio River Basin and over most of the Upper MRB have a positive relationship with AMO
consistent with the increasing trends of CDD (Fig. 6). Usually, AMO shows positive relationship in the locations where precipitation
indices show increasing trends and negative relationship otherwise. Overall, AMO contributes significantly to reducing the rainfall
amount over the MRB by increasing the length of dry spells.

The NAO is the primary mode of atmospheric variability over the Atlantic Ocean and plays an important role in climate variability
(van Loon and Rogers, 1978; Greatbatch, 2000). This holds true over the MRB (Fig. 11) where NAO has positive significant correlations
with intensity (Fig. 11a-d) and frequency (Fig. 11e-g) indices, particularly over the northern part of the MRB and Tennessee region.
This align with Durkee et al., (2007) who showed that the statistically significant increases in the frequency of the observed precip-
itation across the eastern U.S. is associated with the positive phase of the NAO. In fact, this positive correlation with the NAO may be
due to the increases in moisture flux along the east coast of the U.S. (Hurrell, 1995) or/and the increase of the warm air and moisture
advection into the eastern U.S (Hurrell and Dickson, 2005) caused by an increased pressure gradient among the subtropical North
Atlantic regions. Interestingly, NAO may produce warmer (Fig. 11h), wetter (Fig. 11i) conditions over the southern part of the MRB.
With an exception being for dry spell (Fig. 11h), which exhibit a negative relationship over the third quarter of the entire domain,
NAO’s positive influence on precipitation indices (Table 1) is most pronounced over the southeast, the Upper MRB and northwestern
part of the domain. Over the northeast Ohio River basin, stations exhibit non-significant negative correlation with frequency indices,
while few are positively correlated with intensity indices.

Fig. 13. As Fig. 10 but between precipitation indices and Pacific Decadal Oscillation (PDO).
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The relationship between ENSO and extreme precipitation indices (Fig. 12) shows positive correlations almost all part of the MRB,
except with the CDD which exhibits negative correlations over the entire domain. For the frequency indices (Fig. 12a, c &d) negative
correlations (few are significant) are observed over the central and northern Missouri basin encompassing Wyoming, Montana, North
and South Dakota. The most significant positive correlations are observed over the southern and Upper Mississippi. This is particularly
true for PRCPTOT (Fig. 12b) which exhibit strongest positive correlation (r=0.71) with ENSO, indicating that ENSO is one of the most
important climate indexes generating precipitation over the MRB: (1) by increasing the number of wet days event (Fig. 12e), (2)
responsible of heavy (Fig. 12f) and very heavy (Fig. 12g) precipitation, (3) increase the amount of annual precipitation (Fig. 12b). The
occurrence of ENSO will dismiss longer dryness (Fig. 12h) by prevailing wetting conditions over the MRB. However, the length of wet
spells seems to be not strongly tied to ENSO even though they are positively (few are significant) correlated over most part of the
domain. It is interesting to note that, although ENSO and SOI Oscillate oppositely (Fig. 2), they almost have the same spatial rela-
tionship with the extreme precipitation indices and that the observation made for ENSO are valid for SOI (Fig. S8).

The relationship between PDO and precipitation indices is shown in Fig. 13. The pattern of the correlation between PDO and
extreme precipitation indices are quite similar, except the CDD. The northern, and southern through the central part of the MRB are
featured by significant negative correlations, even though not too strong. Conversely, the northeastern -encompassing Tennessee
Region and Ohio River basin- and western border of the domain exhibit strong significant positive correlations with PDO. This will
enhance the SDII and PRCPTOT over the western borders and Ohio river basin. However, with the decreasing of number of wet days,

Fig. 14. As Fig. 10 but between precipitation indices and Pacific North America.

A. Dommo et al. Journal of Hydrology: Regional Studies 56 (2024) 101954 

18 



Oklahoma, Kansas, and Missouri states are experiencing persistent dry spell events (Fig. 13h) due to PDO. Regarding the RX1day
(Fig. 13c) and RX5day (Fig. 13d), negative correlations are shown with stations over the Southeast and North Dakota.

The relationship between PNA and extreme precipitation (Fig. 14) shows a clear distinction between areas with positive re-
lationships and those with negative relationships. Our results indicate that there is a strong connection between PNA and precipitation
indices (Fig. 14a-g & i) (except CDD) over the entire northern part of the domain encompassing the entire Missouri river basin, Upper
Mississippi, and the Arkansas River Basin where stations display statistically significant positive relationships. For CDD (Fig. 14h), the
positive relationships are found for stations located at the southern part of the domain, over the Ohio River basin and over the Upper
Mississippi where correlations are significant and strong. Arkansas, Oklahoma, Missouri, and Kansas states are experiencing negative
relationship between CDD and PNA (Fig. 14h). The significant negative relationships are mostly found at the southern and the
northeast parts of the Ohio River Basin for frequency and duration indices (Table 1) as well as for the duration of the wet spell.
Mallakpour and Villarini (2016) have also found negative relationships between PNA and the frequency of heavy rainfall (Fig. 14f)
over the southern and southeastern parts of the U.S. Non-significant negative correlations can be found for some stations at the
northern part of the MRB especially in Montana and North Dakota for RR1 (Fig. 14e).

The relationship between AO and the extreme precipitation indices studied here are shown in Fig. 15. Most of the negative cor-
relations with the intensity and frequency indices are observed over the Northern part of the domain and southeast namely the
Tennessee region. These negative correlations which are significant and strongest are mostly observed for the PRCPTOT, the RR1 and
the heavy precipitation. Positive correlations are observed over the North Ohio River basin, Arkansas and Missouri states. However,
negative correlations seem to dominate over northeast of MRB for RX1day. For the duration indices, CDD exhibits significant positive
correlations over the northern part of the domain, and negative correlations over the entire south. The CWD is negatively correlated
with AO over almost the entire MRB except the northeast Ohio River basin where positive correlations are linked to the number of wet
days. Overall, NAOmay reduce the precipitation amount over the northern part of the domain while enhancing the length of dry spells.
In the other hand increasing rainfall amount -due to NAO-with the occurrence of heavy and very heavy rainfall could be observed over
the North Ohio and Arkansas.

4. Discussion

Any change in climatic conditions could cause risks to socioeconomic development or even disaster; thus, the spatiotemporal
analysis of the extreme precipitation indices should be studied carefully to guide policymakers and planners. For the analysis of the
average extreme precipitation indices, we considered the majors characteristics of rainfall extreme namely, intensity, duration, and
frequency. All the precipitation indices are featured by a southeast to Northwest gradient with maximum values over the southeastern
part. Generally, the intensity (SDII, PRCPTOT, RX1day, RX5day) indices and frequency of heavy precipitation show the maximum over
the Lower Mississippi. This agrees with Bishop et al., (2018) who showed high amount of rainfall over the Southeast Gulf due to
increase of southward moisture transport from the Gulf of Mexico (Fig. 8). This increasing in moisture due to southerly wind over the
Lower Mississippi can explained more than 94 % of increasing annual total rainfall over the U.S. (Bishop et al., 2018). The
strengthening of the southerly wind over the lower Mississippi has a significant impact on the intensity indices. Except the R20mm, the
highest values of the frequency indices are observed over North Ohio and western border of the domain where elevations are the
highest. It is noteworthy to highlight the control pattern of the extreme precipitation by topography. Almost all the extreme pre-
cipitation indices decrease as the elevation increases up to 1500 m except the CDD. Above 1500 m, extreme precipitation indices such
as PRCPTOT, RR1, R10 and CWD significantly increase with the elevation. These features of the extreme’s precipitation pattern over
theMRB haven’t been highlighted before. However, we think that mesoscale processes-based assignment such as local convection need
to be investigated to better understand the high values of the frequency of wet days and the duration of wet spells over the high
elevated area of the western borders.

The spatial patterns of the extreme precipitation trends over the MRB show decreasing trends over the southern part where there is
a significant warming and increasing trends over the northern part of the domain for the PRCPTOT and the frequency indices where
there is a decreasing in temperature components. Conversely, the dry spell is decreasing over the northern parts and increasing over
south. For the intensity indices (except PRCPTOT), there is a mixed of decreasing and increasing to the point-to-point location.
However it is hard to compare these trends behavior to the existing literature because of: (1) the lack of studies that analyzed the same
extreme precipitation indices over the MRB, (2) studied seasons considered for investigation in previous works versus studied season
considered in this study (spring vs annual; fall vs annual; seasonal vs annual) and (3) the chosen threshold to define the extreme
precipitation such as top 1 % of days with precipitation, annual daily maximum (Howarth et al., 2019) vs indices evaluated in this
work. Nonetheless, for similar studies whose domains cover parts the MRB, some similarities with this work are worth noting. Over the
Northeastern U.S. covering part of the Ohio river basin, Griffiths and Bradley, (2007) showed an increasing in R10mm, RX5day and
SDII with decreasing in extreme temperature. In the same vein, Balling and Goodrich (2011) demonstrated that the increasing in
precipitation intensity over the northeastern quarter of the U.S. is related to the AMO, which is consistent to our findings. Prior work
(Villarini and Mallakpour, 2016) showed an increase in the frequency of heavy precipitation over most parts of the U.S. They also
mentioned that the control of the heavy precipitation frequency to the variability of Atlantic and Pacific oceans. Our findings also meet
these assumptions, as shown by the relationships between extreme precipitation indices and large-scale teleconnections. Similarly, a
trend toward warmer and wet conditions (Brown et al., 2010) as well as the increases in total precipitation (Huang et al., 2017) has
been found. These finding are also consistent with the present study as the wet spells is increasing over Ohio River basin along with the
increasing temperature. In average, the analysis of extreme precipitation indices exhibits an increasing trend (except consecutive dry
days, CDD). However, a long-term dataset could be useful to effectively assess the significance and magnitude of the trends of extreme
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precipitation indices.
The PRCPTOT exhibits an increase with the magnitude of 1.07 mm/year, indicating that PRCPTOT is the most important index

reflecting rainfall variation over the MRB. The increasing trends of frequency indices over the Northern part of the domain could be a
good proxy for flooding occurrence. For instance, excessive precipitation produced severe flooding in nine states over the Upper MRB
during spring and summer 1993 (Wahl et al., 1993) with the wettest conditions recorded from May through July 1993. It is therefore
important that decision makers pay much more attention to the regions where extremes are on the rise. The changes of the mean and
variance of the data series primarily show nonstationary (Khaliq et al., 2006). Therefore, the change in frequency and intensity indices,
particularly the significant trends of PRCPTOT could be due to a small change in the mean (Mearns et al.,1984). Likewise, an increasing
variance could possibly lead to increasing trends of extreme precipitation indices when the climate is in an invariable mean state (Katz
and Brown, 1992).

Although taken on average over the MRB, extreme precipitations do not have strong relationships with large scale teleconnections,
they do however exhibit strong impact in point-to-point location. There is clear evidence of contrasting effect of large-scale tele-
connections on extreme precipitation indices. For instance, while PNA is having negative relationship with the extreme precipitation
indices and particularly on heavy and very heavy precipitation over the southeast and positive over the northwest and central MRB,
PDO is featuring positive relationship over the northeast and negative from the south to the north through the central domain. Their
effects are then likely to counteract. On the same vein, ENSO and/or SOI seem to bring more precipitation over the MRB while AMO is

Fig. 15. As Fig. 10 but between precipitation indices and Artic Oscillation.
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acting positively only over the northeast Ohio basin. As in this study, positive correlation between SOI, NAO and heavy rainfall over
Ohio and Indiana has also been found by Mallakpour and Villarini, (2017) at the annual scale. Similarly, there is certain agreement
between this work and Mallakpour and Villarini, (2017) findings’ regarding the relationship between AMO and heavy rainfall.
However, there is a disagreement with PDO probably in link with the methods used to compute correlation since previous authors used
full correlation while we consider partial correlation to take into account the interaction between climate indexes. As long as one of the
teleconnections is positively correlated with heavy and very heavy rainfall, flooding is likely to occur if it is in lower elevated area -with
consequences on infrastructure, livestock and dams- and greater surface runoff for the highland of western border.

5. Conclusions

The variability and trends of nine extreme precipitation indices over the MRB using daily rainfall from 769 NOAAweather stations,
which record at least 95 % of data in a yearly timescale for the period 1988–2017 are investigated in this study. The impact of the
topography on the spatial structure of the extreme precipitation indices as well as the effect of warming climate on the spatial structure
of the trends are also checked. The relationships between each of the seven large-scale atmospheric teleconnections and each of the
precipitation’s indices was also evaluated. The main findings are summarized below.

The spatial structure of the extreme’s precipitation indices is strongly influenced by the topography. The highest values of the
intensity and frequency indices over the Lower Mississippi are due to increase in southerly wind that bring to much moisture from the
Gulf of Mexico. With the exception being for the CDD (which shows decreasing trend), the extreme precipitation exhibits in average a
non-significant increasing trend over theMRB. However, PRCPTOT shows a significant increasing trend with amagnitude of 1.04 mm/
year. Trend analysis of individual stations shows that, for both frequency and intensity indices, most of the significant downward
(upward) trends are in areas characterized by significant warming (cooling). The reverse is observed for the CDD while wetting
conditions still prevail at some station. Overall, this study help gain insights into the coupled influence of topography andmoisture flux
to the spatial structure of extreme precipitation indices, the impact of warming/cooling condition on the spatial trends of extreme
precipitation indices. Finally, analyzing the partial correlation between extreme precipitation and large-scale teleconnections also
provides more information on their regional impact on extreme precipitation indices.

However, this study has some limitations. The study does not consider human influences such as agricultural activities (Foley et al.,
2014) susceptible to modify microclimate and merits investigation in future research. In addition, the interaction between different
phases (positive vs positive, positive vs negative and negative vs negative) of teleconnections also need to be studied to disentangle
their combine effects on extreme indices.

Nevertheless, as far as infrastructure, agriculture and vulnerable population issues are concerned, the results of this work can help
decision-makers to develop and/or adjust their mitigation and adaptation policies concerning areas vulnerable to floods and drought.
In addition, the present study opens up new horizons for further research into the extreme indices highlighted here.

Table 4
List of abbreviations

Abbreviations Spelling

AMO Atlantic Multidecadal Oscillation
AO Artic Oscillation
PCI Precipitation Concentration Index
MRB Mississippi River Basin
NAO North Atlantic Oscillation
PNA Pacific North American
SOI Southern Oscillation Index
PDO Pacific Decadal Oscillation
NOAA National Oceanic and Atmospheric Administration
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