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Abstract

The occurrence of severe weather is an annual problem for much of the

United States and North America and maximizes from March through June.

With the increased interest in subseasonal weather forecasting, there have

been attempts to anticipate the occurrence of anomalous weather on the time-

scale of one to 4 weeks including the occurrence of severe weather. Previous

research has shown that teleconnection indices, associated with long period

Rossby wave activity, or persistent large-scale flow regimes have been useful

tools in this endeavour. Here, abrupt changes over a 24–72-hr period (10 or

more units per day or 20 or more units over 3 days) in the Southern Oscillation

Index (SOI) time series will be used to demonstrate that these changes can be

associated with the possible occurrence of major severe weather event-days

defined as; 20 or more tornado, 155 or more wind speed events >25.9 m�s−1, or
135 or more hail diameter larger than 25.4 mm, reports over the United States

one to 3 weeks in advance, especially during the March through June period.

The severe weather events obtained from the archive at the Storm Prediction

Center (SPC) from 1991 through 2020 were used. The results here demonstrate

that more than 7 in 10 major severe weather occurrences were associated with

abrupt positive and negative changes in the daily SOI when using signal detec-

tion methods.
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1 | INTRODUCTION

Subseasonal phenomena (e.g., Weickmann and Berry,
2009; Robertson et al., 2015) and forecasting have been
topics of great interest during the last several years. Previous
research (e.g., Renken et al., 2017) demonstrated that there
is detectable variability on the one-to-four-week timescale
in the 500 hPa height field when decomposing the

climatological time series of the Pacific North American
(PNA) Index to wave space using Fourier transforms. They
identified 7–11, 17, 21 and 24-day cycles in the index using
Fourier decomposition of the index from 1950 to 2017, and
this appears to support early work such as Branstator
(1987) who found similar periodicity (16–23 days) in the
upper troposphere and stratosphere during the winter of
1979–1980 using empirical orthogonal function (EOF)
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analysis. Renken et al. (2017) demonstrated also the utility
of the Bering Sea Rule (BSR) and East Asia Rule (EAR)
Indices in skilfully projecting unusual (two standard devia-
tion or greater) warm or cool periods for the central
United States using analogues and this predictability is
likely due to long period Rossby wave propagation
(e.g., Zhao et al., 2010; Farrar, 2011; Wang et al., 2013; Seo
et al., 2016). These studies have identified periodic fluctua-
tions of the PNA index in the Pacific and North America
region due to these Rossby waves up to almost 40 days.

Renken et al. (2017) and Nunes et al. (2017) also dem-
onstrated the linkage of blocking anticyclones to exces-
sively cold periods over the middle of the United States.
Renken et al. (2017) also suggested that severe weather
outbreaks may be anticipated using these techniques.
Previously, it was considered that predictability beyond
the well-known forecast wall (e.g., 10–14 days; Jensen
et al., 2018) is not possible using dynamic techniques
based on the primitive equations (e.g., Li, 2018) although
skilful prediction of changes in the large-scale flow
regime out to 10 days or beyond using ensemble models,
statistical techniques, or a blend of these is increasing the
forecast horizon (e.g., Klaus et al., 2020, and references
therein). Additionally, Gensini and Tippett (2019) show
skill in ensemble model forecasts for tornado day events
out to 9 days and at Day 12 for hail events.

Baggett et al. (2018) show skilful forecasts of severe
weather at the subseasonal timescale (2–5 weeks) associated
with the MJO. Then, Gensini et al. (2019) demonstrate
the link between tropical convection associated with a
half-MJO cycle (from the Indian Ocean to Central Pacific)
20–30 days in advance (about 27 days) with the active late
May tornado outbreak in 2019. Also, Miller et al. (2020) use
a hybrid statistical–dynamic technique to project tornado
outbreak frequency out to week three with skill better than
climatology. Their paper examined the association of severe
weather with persistent weather regimes during May,
which is the peak month for the occurrence of tornadoes.
They found one particular regime (anomalously low heights
over the northwest United States and higher heights over
the southeast United States) was associated with at least
one tornado occurrence more than 70% of the time. Addi-
tionally, they also found that the results were equally valid
for March and April as well.

Intraseasonal variability and the link to severe weather
outbreaks in the United States has been shown previously
(Barrett and Gensini, 2013; Thompson and Roundy, 2013;
Barrett and Henley, 2015; Bosart et al., 2017; Tippett, 2018).
Thompson and Roundy (2013) demonstrated that extreme
(or violent) spring season severe weather outbreaks
(1974–2010) are more likely during phase 2 of the Real-time
Multivariate (RMM) index phase of the Madden–Julian
Oscillation (MJO) also known as the Intraseasonal

Oscillation (ISO). This result is confirmed by Moore and
McGuire (2020) for the spring. Barrett and Gensini (2013)
found that all tornado days (1990–2011) in April (May) are
more likely during MJO phase 6 and 8 (phase 5 and 8), and
less likely during phases 3, 4, and 7 (phases 2 and 3). These
results seem to contradict Thompson and Roundy (2013),
but each examined different datasets. Barrett and Henley
(2015) find a positive relationship between MJO phase
2 and hail days during April similar to Thompson and
Roundy (2013). Bosart et al. (2017) demonstrated a tropical
to mid-latitude connection to extreme weather over North
America via the propagation of Rossby wave trains (RWT).
Much of the work cited in the previous two paragraphs
formed the basis for the creation of the Extend-Range
Tornado Activity Forecast (ERTAF) project (see Gensini
et al., 2020).

Many others have demonstrated that there is inter-
annual variability in the occurrence of severe spring sea-
son weather as associated with the El Niño–Southern
Oscillation (ENSO) (e.g., Akyuz et al., 2004, and refer-
ences therein). Monfredo (1999), Cook and Schaefer
(2008), and Moore et al. (2018) also demonstrate a link
between the phase of ENSO and the occurrence of torna-
does in the United States. Monfredo (1999) and Moore
et al. (2018) find that the La Niña phase favoured higher
tornado numbers in the continental United States
(CONUS) during the severe weather season as defined by
each respective work. Akyuz et al. (2004) showed that
there was a slight preference for La Niña years, but that
the spatial variations of where tornadoes occur preferen-
tially in relation to ENSO. This result confirmed those of
Marzban and Schaefer (2001) and then echoed later by
Cook and Schaefer (2008), although the latter also found
ENSO neutral years favoured more tornado occurrences.
Allen et al. (2015) demonstrated that La Niña years
favoured the occurrence of tornado and hail events over
El Niño across the United States. Cook et al. (2017) found
that the southeastern United States (e.g., Dixon
et al., 2011) was more active (from 1950 to 2016) during
La Niña years while the southern and central plains
region of the United States was more active during El
Niño years. Moore (2019) shows that ENSO variability in
the USA is a function of season. Lepore et al. (2017) dem-
onstrate that winter season ENSO phase can be used to
anticipate spring season severe weather (tornado and
hail) activity. Their work implied that La Niña years
showed more success, especially for hail events.

Additionally, the El Niño phenomenon in South
America was linked to the long-term (monthly) behav-
iour of the Southern Oscillation Index (SOI is the differ-
ence between the pressure at sea level for Tahiti minus
Darwin) by Bjerknes (1966, 1969). It is well known that
ENSO influences the primary location of equatorial
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region convection as well as the strength and location of
the Walker circulation. Tropical convection in turn has
been shown by many researchers to influence the strength
and phase of mid-latitude low frequency circulation through
the propagation of Rossby and Kelvin waves (e.g., Wallace
and Gutzler, 1981; Renwick and Revell, 1999 or MJO see
Pan and Li, 2008; Henderson et al., 2016; Gollan and
Greatbatch, 2017) in both hemispheres. Since the monthly
and daily SOI index has been used to define the phase of
ENSO, it may be possible to use abrupt changes in the daily
SOI to change in the mid-latitude weather over North
America that may accompany severe weather.

The goals of this work are as follows: (a) to demon-
strate that there is subseasonal variability in the daily
Southern Oscillation Index (dSOI) and the time deriva-
tive from 1991 to 2020, (b) this information as well as
the results of Renken et al. (2017) can be used to detect
outbreaks of different modes of severe weather, and
(c) that the ability of dSOI to detect severe weather may
vary interannually (and in particular with ENSO). The
utilization of the time rate of change of teleconnection
indices has precedent. Gensini and Marinaro (2016)
and Gensini and Allen (2018) use the global relative
angular momentum (Global Wind Oscillation [GWO])
and the time derivative, demonstrating that the low
angular momentum state is related to increased tornado
and hail frequencies in the United States. Lupo et al.
(2014), Newberry et al. (2016), and Henson et al. (2017)
use the ENSO and seasonal change in ENSO phase as
related to summer season North American weather as
well as that in Eastern Europe or Western Russia. The
latter examined the seasonal transition in ENSO phase
and related this transition to agricultural yields. Thus,
the results of these study objectives proposed above
would provide a forecaster another tool for anticipating
severe weather beyond 1 week. Section 2 describes the
data and methods used here. Section 3 analyses the
dSOI time series, and section 4 examines the major
severe weather events identified for this study and the
ability of the dSOI index and the daily change in SOI to
correlate with the occurrence of severe weather events
as in Renken et al. (2017).

2 | DATA AND METHODS

2.1 | Data

The data used for this research can be found at several
sources, including the National Centers for Environmental
Prediction/National Centers for Atmospheric Research
(NCEP/NCAR) reanalyses (Kalnay et al., 1996). We also used
the National Centers for Environmental Information (NCEI)

climatic information (teleconnections and climatological
information such as surface temperatures). The NCEP/
NCAR reanalysis data used were the 500 hPa height fields
on a 2.5� × 2.5� latitude/longitude grid four times daily
from 1948 to the present. The SOI index information
was available through the Bureau of Meteorology
(BOM) (Australia) website (https://data.longpaddock.qld.
gov.au/SeasonalClimateOutlook/SouthernOscillationIndex/
SOIDataFiles/DailySOI1887-1989Base.txt) from June 6,
1991 to December 31, 2020. The period from January
1, 1991 to June 5, 1991 was obtained by using daily pressure
data obtained for Tahiti and Darwin and then SOI was cal-
culated using the BOM formulation,

SOI=10
Pdiff−Pdiff
SD Pdiffð Þ : ð1Þ

In Equation (1), Pdiff is the sea level pressure differ-
ence between Tahiti and Darwin, and Pdiff is the long-
term monthly average of the quantity, whereas SD(Pdiff)
is the long-term standard deviation. This provides for a
complete 30-year period. The severe weather storm
reports (January 1, 1991 to December 31, 2020) can be
found at two sites (https://www.spc.noaa.gov and https://
www.ncdc.noaa.gov/stormevents/). The filtered counts of
severe weather occurrence were used from the Severe
Storms Prediction Center (SPC) archive.

2.2 | Methods

The 24- and 72-hr change in daily SOI (defined as dSOI
here in order to differentiate from the monthly value)
was calculated from January 1, 1991 to December
31, 2020 (10,958 points). The 24- and 72-hr change in
dSOI was calculated respectively as

dSOIday+1−dSOIday
� �

, ð2aÞ

dSOIday+3−dSOIday
� �

: ð2bÞ

Then a Fourier transform was applied to each time
series and the result plotted in wave space. In order to
test for significant periods (e.g., Newberry et al., 2016;
Renken et al., 2017), a statistical test assuming a white
noise spectrum a priori was applied following Wilks
(2006) and testing at the 95% confidence level (p = .05).
Then, a dSOI change event was counted as a time period
when one or several consecutive days recorded a dSOI
change of the same sign. This resulted in 1,708 10-point
change events and 1,129 20-point change dSOI events
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over the entire 30-year period. The values 10 and 20 were
used to identify a change in dSOI event since these values
are larger than one and two standard deviations in dSOI
change, respectively (see section 3).

In order to examine the occurrence of severe weather
and produce a large enough sample size for each mode
(tornado, hail diameter ≥25.4 mm, and wind speeds
≥25.9 m�s−1), a major severe weather event (day) was
defined here subjectively as a day with the number of
reports over the entire United States as follows:

• 20 or more tornadoes.
• 155 or more wind speeds ≥25.9 m�s−1.
• 135 or more hail diameter ≥25.4 mm.

This produced 358 tornado days, 365 wind event
days, and 309 hail event days, and these days were not
always mutually exclusive. However, we do study these
events as independent time series as several references
in the introduction have done, and then a subset of
these days where all three criteria are met on the same
day. Then the annual temporal distributions of severe
weather occurrence were plotted and the synoptic-
scale environment of these events were examined. The
distributions of the severe weather occurrences were
tested using the chi-square goodness-of-fit test
(e.g., Wilks, 2006).

The dSOI information and severe weather were then
stratified by ENSO phase. The definition for ENSO used
here is described in, for example, Newberry et al. (2016),
Henson et al. (2017), or Lupo et al. (2019), and references
therein, and a short description is given here. The
Japanese Meteorological Agency (JMA) ENSO index is
available through the Center for Ocean and Atmospheric
Prediction Studies (COAPS) from 1868 to present
(https://www.coaps.fsu.edu). The JMA classifies ENSO
phases using SST within the bounded region of 4�S–4�N,

150�–90�W, and defines the commencement of an ENSO
year as 1 October, and its conclusion on 30 September of
the next year. This index is widely used in other pub-
lished works (see Newberry et al., 2016 and references
therein), and a list of years is given in Table 1. Finally,
the ability of the dSOI change index to detect the occur-
rence of severe weather is examined.

Signal detection theory was used here to evaluate the
utility of the dSOI as a forecast tool. This is typically used
in short range forecasting, such as the occurrence of
severe weather (e.g., Brooks, 2004), but Renken et al.
(2017) used this for subseasonal range forecasting. It is
based on a contingency table for weather events forecast
and observed (Table 2). From signal detection theory, X
is the number of severe weather occurrences that were
associated with dSOI change events and represents a cor-
rect forecast, and Y is the number of severe weather
events that occurred and no dSOI change events were
associated with it. The value Z is the number of dSOI
change events that occurred without a severe weather
event, and W is the number of days with no dSOI change
events and no severe weather occurrences. Here we cal-
culate forecast success or probability of detection, false
alarm rate, critical success, and these expressions are
given as

POD=X X+Yð Þ−1, ð3Þ

FAR=Z X+Zð Þ−1, ð4Þ

CSI=X X+Y +Zð Þ−1: ð5Þ

Additionally, the number of severe weather events
associated with dSOI changes due to random chance
(HC) (SWPC, 2021) were estimated since there was a
high FAR, and this is calculated as

HC= X+Yð Þ X+Zð Þ number of days−1: ð6Þ

This quantity was used as one measure of the value of
using the dSOI changes to identify severe weather events.
The value will be a decimal number greater than zero.
However, in order to make HC consistent with POD,
FAR, and CSI, or a number between 0 and 1, we divide
by the number of correct forecasts (X) and present this as
the ratio of random hits to hits. Also, if the majority of
severe weather events associated with dSOI changes were
forecast as random hits, then dSOI is not a useful indica-
tor for the future occurrence of severe weather events.
The HC index could then be used in conjunction with
the CSI index to calculate the Gilbert Skill Score (GSS)
(SWPC, 2021) which is

TABLE 1 List of ENSO years used here

El Niño (EN) Neutral (NEU) La Niña (LN)

1991 1990 1998–1999

1997 1992–1996 2007

2002 2000–2001 2010

2006 2003–2005 2017

2009 2008 2020

2014–2015 2011–2013

2018 2016

2019

Note: The years below are taken from the Center for Ocean and Atmosphere
Prediction Studies (http://www.coaps.fsu.edu).
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GSS= X−HCð Þ X+Y +Z−HCð Þ−1: ð7Þ

As a measure of skill, the GSS will be a value between
0 and 1, reflecting the value of a certain forecast above a
certain baseline (e.g., Renken et al., 2017; Klaus
et al., 2020), in this case a random hit. A score of zero
would represent a useless forecast, while a score of unity
would represent a perfect forecast.

3 | DAILY SOI INDEX
VARIABILITY

3.1 | Time series

The dSOI index values and the daily change in dSOI were
analysed here in order to determine if short-term vari-
ability in this index can be identified. Typically, this
index is analysed monthly in order to determine the cur-
rent phase of ENSO. Lupo et al. (2014), Newberry et al.
(2016), and Henson et al. (2017) all use the change in
phase of ENSO over the Northern Hemisphere summer
season to differentiate the dominant weather and climate
regimes and these depended on the direction of the
ENSO phase transition. Jensen and Lupo (2013) showed
the correspondence of the time rate of change in the daily
integrated enstrophy (IE) across the Northern Hemi-
sphere along with local maxima of IE could be associated
with blocking onset and termination, and later Jensen
et al. (2018) and Klaus et al. (2020) showed that these
quantities could be associated with large-scale (hemi-
spheric) flow regime transitions. Gensini and Marinaro
(2016) used the global relative atmospheric angular
momentum and the time derivative to correlate with the
occurrence of tornado outbreaks. Thus, there is precedent
for examining teleconnection indices and their time rate
of change.

Figures 1 and 2 show the dSOI and daily dSOI change
from 1991 to 2020 in Cartesian space (Figure 1) and the
Fourier transform of this time series which is in wave
space (Figure 2). In Figure 1, the mean dSOI and mean
daily dSOI change was −1.3 and 0.0 units, respectively,
and the standard deviations were 15.6 and 8.0 units,
respectively. In section 4.2, a daily dSOI change of
10 units and 3-day change of 20 units will be used to
detect severe weather events since these values are larger
than one standard deviation of the dSOI change.

In Figure 2, wave numbers 500–1,500 are shown for
the dSOI and dSOI change time series, which correspond
to waves with a period of 7–20 days. The blue dashed line
shows the p = .05 confidence level using a white noise
spectrum (Wilks, 2006). If the full spectrum were shown,
the dSOI displays the greatest power at much longer
periods (low wave number), while the daily change in
dSOI displays the greatest power at shorter periods (high
wave number). Significant periods shown near wave
number 670, 760, and 780 correspond to 16, 15, and
14 days (Figure 2a), respectively. Other peaks in the dSOI
are evident near wave number 560, 920, 940, 1,020, and
1,160 (Figure 2a,b) which correspond to 20, 12, 11, and
10 days, respectively. There are two peaks (140 and 210)
are not shown here but they are consistent with the MJO
period (e.g., Thompson and Roundy, 2013). There are
two other peaks (360—not shown and 560—30 and
24 days, respectively) which are consistent with results
shown in Branstator (1987) or Renken et al. (2017) for
mid-latitude flows. The latter four periods (920, 940,
1,020, and 1,160, or 10–12 days) are similar to those asso-
ciated with mid-latitude large-scale weather regimes
(e.g., see Jensen et al., 2018). In Figure 2c, the same
14–16-day periods in the dSOI change are evident and
correspond to the same periods in the dSOI index
(Figure 2a). There are peaks in the daily change in the
SOI index from wave numbers 900–1,470 corresponding
with periodicities of 7–12 days. These results mirror the

FIGURE 1 The (a) observed

daily SOI (dSOI) and (b) 24-hr dSOI

change for the study period. The

abscissa is the calendar date

(dd/mm/yy) and the ordinate is

(a) dSOI and (b) 24-hr dSOI change.

Data available through the Bureau of

Meteorology (BOM) (Australia)

website (https://data.longpaddock.

qld.gov.au/SeasonalClimateOutlook/

SouthernOscillationIndex/

SOIDataFiles/DailySOI1887-

1989Base.txt) [Colour figure can be

viewed at wileyonlinelibrary.com]
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results of Renken et al. (2017) who show the 8–12-day
periodicities in the daily Pacific North American (PNA)
Index. Also, in section 4, these periods will be used for
the detection of severe weather experiment.

3.2 | Daily SOI events climatology

The monthly distributions were also examined (Figure 3),
and the number of 10-point dSOI charges peaked in May,
August, and November regardless of the ENSO year. This
resulted in the NH spring (Southern Hemisphere fall)
being the season with the largest number of these changes.
The number of 20-point change events per month was
comparable in terms of which months showed the stron-
gest peaks. These distributions were all the same using the
chi-square goodness-of-fit test at p = .01. The strong spring

peak and lesser NH fall peaks are also likely due to the
annual cycle in SPCZ activity, which is most active in the
austral summer and into the fall (e.g., Vincent, 1994;
Folland et al., 2002), as well as the mid-latitude jet stream,
cyclone activity, and blocking (e.g., Wiedenmann et al.,
2002, and references therein).

4 | RELATIONSHIP TO SEVERE
WEATHER

4.1 | Major severe weather events

In order to examine the relationship of the dSOI changes
to major severe weather days, severe weather days were
identified using the criterion described in section 2. The
temporal distribution of these major events is shown in

FIGURE 2 The (a, b) dSOI

index and (c, d) daily (24 hr) change

in dSOI index in wave space for wave

numbers (a, c) 500–1,000, and (b, d)

1,000–1,500. The blue dashed line

shows the p = .05 confidence level

using a white noise spectrum

(Wilks, 2006). The abscissa is wave

number (top) and period (days;

bottom) and the ordinate is spectral

power [Colour figure can be viewed

at wileyonlinelibrary.com]
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Figure 4 as stratified by phase of ENSO. For days with
20 or more tornado reports (Figure 4a), the peak occur-
rence for LN (4 of 6 years) and Neutral (6 of 17 years)
(NEU) years is in April. For LN years, the peak season
was March–May which is the earliest season, while for
NEU years the peak season was April–July. For EN years,
the peak month was May (3 of 7 years), while the peak
season was March–June. EN and LN years showed simi-
lar annual occurrences (about 13 days), while NEU years
had a mean occurrence of 10.8 days.

An examination of the annual variation of the peak
occurrence for significant tornado days was performed by
averaging the number corresponding to the calendar
month(s) associated with a particular year's peak occur-
rence. This verified the April peak overall (4.8) and the
standard deviation was 1.4 months. Most years observed
the peak occurrence in April or May (24 years). If the peak

occurrence was in multiple months (e.g., April and May),
the peak was presented as an average of these months
(4.5). For only 1 year (July 2010) did the peak occurrence
happen outside the first half of the year. However, caution
must be taken when analysing the peak month of occur-
rence in this manner since not all peak months have a
similar number of significant tornado days.

For wind event days (Figure 4b), the annual distribu-
tions were similar at p = .01 as well. The mean annual
number of major severe days were similar for LN and EN
years (15 vs. 14, respectively), while NEU years showed
fewer occurrences (10.2 days), and this result is

FIGURE 3 The number of (a) 10-point 24-hr and (b) 20-point

72-hr dSOI change events per month as separated by phase of

ENSO. The ordinate is the number of events and the abscissa is the

calendar month. The thin solid, dotted, dot-dash, thick dash lines

represent the number of events per year for the total (1991 – 2020),

LN, EN, and NEU years, respectively.
FIGURE 4 The mean monthly occurrence of days with;

(a) 20 or more tornado reports, (b) 155 or more wind event reports

(speeds ≥25.9 m�s−1), and (c) 135 or more hail (diameter

≥25.4 mm) reports. The ordinate is a mean monthly number of

days and the abscissa is the month of the year. The unfilled, grey,

and black bars represent La Nina, El Nino, and Neutral Years,

respectively.
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significant at p = .05. The peak season for wind event
days was later than that for tornadoes in general as
shown in previous studies, and May was the peak month
(mean of the total sample = 5.3) of occurrence. The maxi-
mum was observed in May for 14 years and June for
9 years, and the standard deviation was the smallest for
major severe wind days (1 month). During LN and NEU
years the peak season was April–June with an absolute
maximum in May. May was the peak month for four of
six LN and nine of 17 NEU years. For EN years, the sea-
son was April–July with a peak in June, and 4 of 7 years
showed the peak in June or July.

For major hail event days (Figure 4c), the annual
mean number of days was larger for LN years (13 days)
when compared to EL and NEU years (9.5 and 10 days,
respectively) and this difference is significant at p = .05.
The annual distributions are all similar at p = .01. The
seasonal distribution is similar for LN (3 of 6 years) and
NEU (9 of 17 years) years shows an absolute peak in
April (mean total sample = 4.7), while EN years peaked
in May (5 of 7 years). The severe weather season is earli-
est for this variable beginning in March for every ENSO
phase but terminating in May for EN years and June for
LN and NEU years. Major hail event days also showed
the largest variation as measured by standard deviation
(1.7 months).

The temporal distribution of severe weather event
findings are similar to several previous publications in
spite of a different criterion chosen for what constitutes a
major severe weather day (e.g., Cook and Schaefer, 2008;
Cook et al., 2017) and these found that the number of tor-
nado days did not show strong interannual variability.
The Cook et al.'s (2017) study covered a longer period of
record and counted all tornado days. However, it is
apparent in this study that NEU years show fewer major
tornado day occurrences than either LN or LN years. The
same was found for wind event days. Since this study
examined severe weather reports over the CONUS, the
above analysis alone cannot answer the question of
whether there is spatial variability in major severe
weather days with respect to ENSO.

4.2 | Using daily SOI and the daily
change to detect severe weather days

An examination of the mean daily change in the dSOI
(dSOI itself) was calculated to be close to zero
(−1.5 units�day−1) and the standard deviation was
8 (15.7) units. Thus, a change of 10 dSOI units�day−1 is
larger than one standard deviation, while a 20-point
change over 3 days is greater than two standard devia-
tions. During the 30-year period, there were 1,708 and

1,129 dSOI 10-point daily (24 hr) change and 20-point
3-day change (72 hr) events, respectively. Often, these
events occurred in succession or in episodes.

Large changes in the dSOI are lagged from one to
30 days prior to just one or more severe weather reports
for each mode of severe weather and examined (Table 2)
for April through June, it is apparent that there is little
difference in the mean number severe weather reports
corresponding to these lags. However, when testing these
means versus the dSOI lag for significance using a t test
(Table 2), there is a preference for the occurrence of
severe weather lagged at approximately 16 days. This cor-
responds to significant dSOI and dSOI change variability
identified in Figures 1 and 2. What is not clear is whether
the result in Table 2 is associated with a singular physical
phenomenon (e.g., cycles associated with global angular
momentum; Gensini and Marinaro, 2016), if this repre-
sents constructive interference between short period fluc-
tuations (e.g., vascillation; Jensen et al., 2018, and
references therein) and the longer period Rossby wave
action identified by Renken et al. (2017) and several
others, or was due to chance occurrence.

As shown in section 3, there are periodicities in the
dSOI and the daily change of dSOI between approxi-
mately 8 and 12 days, as well as at 16 and 24 days. These
periodicities are similar to those found in previous
research cited earlier and the results in section 3. Thus,
in order to test whether these large changes in dSOI cor-
relate to major severe weather days, statistics such as the
POD, FAR, and CSI were determined by examining the

TABLE 3 The number of event days with 20 or more tornado

reports associated with (a) 10-point 24-hr and (b) 20-point 72-hr

changes in the dSOI by ENSO phase at 9–11 calendar days and 19–
21 calendar days before outbreak and the fraction of the total

days (POD)

LN EN NEU Total

10-point 24-hr change

9–11 days 28/0.43 43/0.42 88/0.46 159/0.44

19–21 days 19/0.29 45/0.44 80/0.42 144/0.40

No dSOI change 22 29 47 98

Total w/o overlap 43/0.66 74/0.72 143/0.75 260/0.73

20-point 72-hr change

9–11 days 31/0.48 45/0.44 87/0.46 163/0.46

19–21 days 20/0.31 38/0.37 76/0.40 134/0.37

No dSOI change 22 39 62 123

Total w/o overlap 43/0.66 64/0.62 128/0.67 235/0.66

Total outbreaks 65 103 190 358

Note: The total number of outbreaks identified excludes the event days
identified by both periods.

RENKEN ET AL. 9



daily changes in the dSOI index with a lag of 9–11 and
19–21 calendar day period previous to the major severe
weather day (Tables 3–6) for all days of the year. These
intervals were chosen since they are at the mid-points of
the periodicities described above and provide for a more
rigorous test of the POD. The number of missed forecasts
was also counted. A miss is determined to be an event
that was not preceded by a large dSOI change in either
the 10-point 24-hr change or the 20-point 72-hr change.

There were 358 event days in which 20 or more torna-
does were reported. Table 3 demonstrated that 159 and
144 of these events were preceded by a 10-point 24-hr
change in the dSOI index 9–11 and 19–21 calendar days
before the event, respectively. For 20-point changes over
72-hr, these numbers were 163 and 134 days, respec-
tively. Separately, this represents about 37–44% of all
severe weather events being preceded by large changes in

dSOI at 7–11 days or 19–21 days prior (Table 3). For the
total number of events identified in Table 3, those that
were preceded by changes in both time periods (and con-
dition) were counted only once. Thus, 73% of events were
preceded by strong changes in the dSOI index in either
range (9–11 and 19–21 calendar days) for a 24-hr dSOI
change of 10 points, and 66% for a 72-hr change of
20 points in dSOI. This means only 27 and 34% of these
events, respectively, were counted as a miss. This is fewer
misses than either the 9–11 or 19–21 calendar day catego-
ries separately.

Examining these events by phase of ENSO (Table 3)
annually demonstrates that there is no significant vari-
ability in the percentage of major tornado days preceded
by 10-point 24-hr dSOI change or a 20-point 72-hr dSOI
change at 9–11 calendar days before the event. However,
19–21 calendar days beforehand, 10-point 24-hr dSOI
changes or 20-point 72-hr dSOI changes are more likely
to be associated with severe weather in EN and NEU
years. Thus, if both categories are considered, EN and
NEU years are associated with the larger POD than LN
years.

The annual results for wind event (Table 4) and hail
event (Table 5) days are similar for the 10-point 24-hr
changes in dSOI to the major tornado day results. Both
Tables 4 and 5 showed a 73% POD overall, and for wind
event days the POD is larger for EN years versus NEU
and LN years. The POD for hail event days is lowest for
LN years.

As noted above, the test performed here is more rigor-
ous in order to demonstrate the value of large daily
changes in dSOI indicating the possibility of severe
weather 9–11 or 19–21 calendar days later. The periodic-
ities identified in the dSOI and change in dSOI time
series (Figure 2) is likely to vary by season and ENSO
phase as discussed in Renken et al. (2017). If the test
interval used here was wider, or varied according to sea-
son or ENSO phase, a much higher POD would have
been identified. In the case of a test with a wider interval,
the POD would have been overestimated arguably.

Nonetheless, since most severe weather days occur in
the April–June time frame (Figure 4) (191 of 358 major
tornado, 258 of 365 major wind, and 187 of 308 major
hail day events) and certainly in the February–July time
frame, the outcome here suggests that a large change in
the dSOI index during these months may be a signal to a
forecaster to anticipate the possibility of severe weather
in the United States 1–3 weeks prior to its actual occur-
rence. A similar result was found recently by Gensini and
Marinaro (2016) who used global atmospheric angular
momentum time series and the change with time or
Miller et al. (2020) who used a statistical-dynamic model
of weather regimes to demonstrate skill in anticipating

TABLE 4 As in Table 3, but for 155 or more wind event

(speeds ≥25.9 m�s−1) reports

LN EN NEU Total

10-point 24-hr change

9–11 days 44/0.58 55/0.50 92/0.51 191/0.52

19–21 days 28/0.37 57/0.52 82/0.46 167/0.46

No dSOI change 23 27 50 100

Total w/o overlap 53/0.70 83/0.75 129/0.72 265/0.73

20-point 72-hr change

9–11 days 40/0.53 57/0.52 85/0.47 182/0.50

19–21 days 28/0.37 49/0.45 82/0.46 159/0.44

No dSOI change 23 33 51 107

Total w/o overlap 53/0.70 77/0.70 128/0.71 258/0.71

Total outbreaks 76 110 179 365

TABLE 5 As in Table 3, except for days with 135 or more hail

(diameter ≥25.4 mm) reports

LN EN NEU Total

10-point 24-hr change

9–11 days 27/0.41 42/0.56 77/0.46 146/0.47

19–21 days 25/0.38 35/0.44 81/0.48 141/0.46

No dSOI change 25 17 40 82

Total w/o overlap 41/0.62 58/0.77 128/0.76 227/0.73

20-point 72-hr change

9–11 days 35/0.53 31/0.41 74/0.44 140/0.45

19–21 days 25/0.38 38/0.51 78/0.46 141/0.46

No dSOI change 18 21 52 91

Total w/o overlap 48/0.73 54/0.72 116/0.69 218/0.71

Total outbreaks 66 75 168 309
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tornado outbreak days 1–3 weeks prior to the event.
These investigations examined only tornado days while
this work included other severe convective weather phe-
nomena such as hail and wind events. Additionally, this
outcome is similar to the forecast value found by Renken
et al. (2017) to anticipate extreme weather 1–3 weeks in
advance using the BSR or EAR indices.

As expected, the FAR was higher than the POD
(Table 6) for the annual occurrence of tornado days with
more than 20 reports, but this quantity was actually lower
for the 20-point 72-hr dSOI change events. In spite of the
high FAR, fewer than one in four and one in six forecast
successes were considered to be the result of random
chance (HC) for 10- and 20-point dSOI change events,
respectively. These results above provided for CSI and GSS
scores that were also higher for the 20-point dSOI change
events. It is noted here that the GSS scores in Table 6 were
on the order of 0.10–0.20, which means there is skill in the
dSOI over random chance in the detection of major tornado
days. If the skill score is a measure of value added to the
forecast, the GSS here are higher than the value added by a
human forecaster over 24-hr model forecasts which were
0.00–0.10 (see Lupo and Market, 2002). The scores here are
also similar to the skill of using teleconnections in Renken
et al. (2017) to forecast anomalous temperatures on the sub-
seasonal scale, and about as high as winter season forecasts
(two seasons ahead) for the central United States (see Lupo
et al., 2008).

If other measures of success are examined (HC, CSI,
and GSS; see Table 6), the lowest (highest for HC) skill

values are found for 10-point 24-hr dSOI change LN
events, while the highest (lowest for HC) skill values are
associated with 20-point 72-hr SOI change LN events.
However, in examining the measures of success in
Table 6, the 20-point 72-hr dSOI change events showed
the highest CSI and GSS for both wind event and hail
event days as for tornado event days. For 10-point 24-hr
dSOI change events, the HC rate is highest during LN
years.

In order to make comparisons to the annual statis-
tics, the same measures of forecast success examined
above in Tables 3–6 were done for the peak/spring sea-
son only (March–May) for tornadoes, and hail
(Figure 4a,c). These months accounted for more than
one half of each sample, 192 event for tornadoes and
197 events for hail, For the wind events, April–June was
examined and these months accounted for 257 of the
365 total events (Figure 4b). However, in spite of the fact
that these months showed a peak in occurrence of dSOI
change events, the number of these were only about 30%
of the annual number of events. These results are pre-
sented in Table 7.

Examining the dSOI change detection statistics for
only the peak time of year for both dSOI and major
severe weather days showed improvement in the POD of
severe weather for 10-point 24-hr dSOI change events
(Table 7). As shown earlier, the peak time of year for
both are similar. The FAR decreased substantially and in
many cases were less than the POD. The CSI and GSS
were improved substantially as well. The improvement in

TABLE 6 Signal detection and skill

score statistics for severe weather

modes and dSOI changes presented in

Tables 3–5 for all LN, EL, and NEU

years

All LN EL NEU

Tornado event days POD 0.726/0.656 0.662/0.662 0.718/0.621 0.753/0.674

FAR 0.848/0.793 0.849/0.758 0.839/0.791 0.852/0.803

CSI 0.144/0.187 0.131/0.215 0.152/0.186 0.141/0.180

HC 0.215/0.157 0.224/0.140 0.218/0.168 0.201/0.158

GSS 0.116/0.162 0.104/0.191 0.122/0.159 0.115/0.156

Wind event days POD 0.726/0.707 0.697/0.697 0.775/0.700 0.721/0.715

FAR 0.845/0.772 0.814/0.702 0.819/0.748 0.867/0.803

CSI 0.146/0.208 0.172/0.263 0.171/0.227 0.127/0.183

HC 0.215/0.146 0.213/0.133 0.208/0.150 0.219/0.148

GSS 0.119/0.183 0.141/0.237 0.140/0.200 0.102/0.160

Hail event days POD 0.735/0.706 0.621/0.727 0.773/0.720 0.762/0.690

FAR 0.867/0.808 0.856/0.730 0.874/0.824 0.868/0.821

CSI 0.127/0.178 0.133/0.245 0.122/0.165 0.127/0.165

HC 0.213/0.147 0.239/0.208 0.203/0.145 0.207/0.154

GSS 0.102/0.156 0.104/0.204 0.100/0.145 0.103/0.144

Note: These are presented as 10-point 24-hr/20-point 72-hr dSOI change events. The HC is shown as the
ratio of random hits to hits.
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GSS values to 0.19–0.41 means that the skill for the peak
season of occurrence especially at the high end of the
range were nearly as high as short range dynamic model
500 hPa height forecasts at the 7–10 calendar day range
(Klaus et al., 2020). For CSI, these values were generally
lower than 0.20 in Table 6, but generally higher than 0.25
to as much as 0.47 in Table 7. The CSI values in Table 7
were higher than those found for tropical cyclone inten-
sity found by Tam et al. (2021) which ranged between
0.2–0.3. The ratio of random hits was also slightly higher,
but not substantially. For the 20-point 72-hr dSOI
changes during the peak time of the year, the measures
of forecast skill such as POD were decreased, and the
estimated number of random hits was higher. Measures
such as FAR, CSI, and GCC were similar to the overall,
but in some cases (e.g., LN year tornado and hail event
days) were substantially worse than the annual results
overall. In order to investigate this association more
closely, the next step in this work may be to isolate active
synoptic-scale weather patterns and determine if a simi-
lar improvement can be found in the POD of severe
weather for significant changes in the dSOI regardless of
time of year.

In Tables 6 and 7, the high FAR are of particular con-
cern. For the entire year the FAR are higher than the
POD (Table 6) and generally between 0.73 and 0.87.
When the study samples are limited to the 3 months of
the year when the occurrence of severe weather is higher
(Table 7), and the number of 10-point 24-hr dSOI
changes is marginally higher, the POD is generally higher
than the FAR, which is generally between 0.45 and 0.81.

A cursory examination of the published literature shows
many studies of FAR (e.g., Barnes et al., 2007) address
the issue of human forecasts, model forecasts, or warnings
corresponding to the occurrence of dangerous phenomenon
such as severe weather. Fewer (e.g., Renken et al., 2017)
calculate FAR using a predictor variable which precedes a
target (or predictand) variable. In Renken et al. (2017) the
FAR was on the order of 0.29–0.35 when comparing tele-
connection indices to significant (2σ) temperature outbreaks
in the central United States.

The reasons for the high FAR found here are not
immediately clear, and more study would need to be
done to determine why this problem exists. Several vari-
ables could be examined including the magnitude of the
dSOI change criterion, the “forecast” lead time interval,
or what constitutes a major severe weather day. The cri-
terion for a severe weather day was chosen subjectively
here in order to provide a large sample for study. The
former two variables would change what constitutes a
successful forecast (POD) as well as the FAR. Another
issue may be the narrow verification intervals for severe
weather and the dSOI as identified earlier. In combina-
tion with the limits of dynamic predictability for
synoptic-scale weather phenomenon, including those
that are responsible for severe weather events, is at the
edge of the 9–11-day POD interval also may partly con-
tribute to the higher FAR rates. Nonetheless, in spite of
the higher FAR, the discussion above demonstrated that
the measures of success when using dSOI change to
anticipate the occurrence of severe weather in the USA
were comparable to those found in other studies.

TABLE 7 As in Table 6, except for the peak months of occurrence only

All LN EL NEU

Tornado event days, Mar–May POD 0.720/0.370 0.630/0.150 0.750/0.440 0.740/0.410

FAR 0.708/0.785 0.667/0.872 0.647/0.692 0.752/0.809

CSI 0.262/0.156 0.278/0.074 0.316/0.220 0.229/0.150

HC 0.238/0.324 0.261/0.682 0.246/0.283 0.227/0.294

GSS 0.212/0.111 0.222/0.025 0.258/0.169 0.186/0.111

Wind event days, Apr–Jun POD 0.760/0.410 0.767/0.480 0.770/0.290 0.740/0.460

FAR 0.647/0.733 0.446/0.524 0.588/0.765 0.728/0.774

CSI 0.317/0.193 0.474/0.315 0.366/0.150 0.248/0.179

HC 0.266/0.355 0.238/0.277 0.273/0.479 0.274/0.328

GSS 0.254/0.134 0.407/0.250 0.296/0.084 0.193/0.128

Hail event days, Mar–May POD 0.730/0.370 0.740/0.240 0.820/0.430 0.690/0.400

FAR 0.696/0.776 0.520/0.745 0.735/0.791 0.725/0.777

CSI 0.274/0.162 0.409/0.143 0.250/0.164 0.245/0.168

HC 0.234/0.319 0.222/0.417 0.222/0.286 0.242/0.298

GSS 0.224/0.117 0.350/0.089 0.205/0.123 0.197/0.124
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5 | SUMMARY AND
CONCLUSIONS

This work examined the occurrence of major severe
weather days defined as 20 or more tornado, 155 or more
wind reports (speeds ≥25.9 m�s−1), and 135 or more hail
reports (diameter ≥25.4 mm) and then related this to
periodicity found in the time series of the dSOI and the
change with time of this index. The time period studied
was the most recent 30 years (1991–2020). Using data
provided by the NCEP/NCAR reanalyses and the severe
weather archives found at the SPC in Norman, OK, the
following results were obtained:

• There were significant periodicities found in the time
series of dSOI and the change with time of this index,
and these are similar to the results found in many other
studies when analysing teleconnection index time series.

• There were more major severe weather days from
January to April found in LN years and then from June
to August there were more major severe weather days
toward the end of the EN phase (since the phase tran-
sition occurs in the Northern Hemisphere fall). Here
we found that most major severe weather days
occurred during April and May. These results are simi-
lar to Cook et al. (2017) who studied only tornado days
in the early part of the year, for a longer time period.

• There was a lag of approximately 16 days found
between the time of a major change in the SOI index
and the occurrence of any severe weather in the
United States when counting the days when at least
one severe weather event occurred.

• There was a POD on the order of 70% for major severe
weather days when a 10-point 24-hr change in the
dSOI or a 20-point 72-hr change in the dSOI occurred
1–3 weeks previously when tested using a relatively
narrow band for this lag. This result is for the entire
year. The results found here likely underestimated the
POD but suggests utility in anticipating severe weather
1–3 weeks in advance using a teleconnection index
such as the dSOI. This result corroborates those of
Miller et al. (2020) who used different techniques.
However, the FAR was higher than the POD.

• The number of dSOI change events varied annually as
well showing a peak in the Northern Hemisphere
spring season, which corresponds to the peak time for
severe weather occurrence. The number of dSOI
change events were smallest in LN years.

• With respect to ENSO, these severe weather events
were preceded by 10-point 24-hr changes dSOI most
often in EN years and the POD was about 10 percent-
age points less in LN years. There was no ENSO vari-
ability in the 20-point 72-hr changes in dSOI.

• When testing the performance metrics during the peak
severe weather season, there was improvement for the
10-day 24-hr dSOI change events corresponding to
severe weather events. But, the 20-point 72-hr dSOI
changes over 3 days showed somewhat degraded skill.
During the peak severe weather season, the POD was
higher than the FAR, and more investigation would be
needed to determine why the FAR is relatively large in
this work.
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