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a b s t r a c t

The Hurst exponent H is used to determine the measure of predictability of a time series. The value
between 0 and 1 with 0.5 representative of a random or uncorrelated series, H>0:5 and H <0:5 reflect a
data set which is persistent and anti-persistent respectively. The fractal dimension can be given from the
Hurst exponent. The fractal dimension is a factor of the complexity of which the system is being repeated
at various scales. If the fractal dimension does not change with scale it is deemed monofractal if not,
multifractal. The Hurst exponents were determined in this study using the Rescale Range Analysis (R/S
Analysis) and Multifractal Detrended Fluctuation Analysis (MF-DFA) for monofractal and multifractal
investigations respectively. These methods were applied to daily 10 min wind speed time series data for
the year 2009 from three locations within Missouri: Columbia, Neosho and Blanchard for three tall tower
stations. The results obtained from the monofractal analysis showed minor variations in the Hurst ex-
ponents for the three stations and heights for all the months in 2009. These values ranged from 0.7 to 0.9
and its corresponding fractal dimension was ranged between 1.3 and 1.1. The results for the MF-DFA
showed that the wind speed time series were multifractal in nature as the Hurst exponents were
functions of the scaling parameters. Also, the plots of the Renyi Exponent were non-linear for the stations
and the various channels; this is representative of multifractal signals. The fractal dimensions of the time
series using multifractal analysis were determined to be greater than these values determined using
monofractal analysis. However, there were no indications of consistent increases in the complexity of the
systems’ multifractality with increasing heights for the various stations’ tall towers.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction 1.1. Wind speeds in Missouri
The aim of this study is to determine the internal dynamics of the
wind speed time series for three different height levels for three
towers in northern, central and southern Missouri. The fractal char-
acteristics of these records provides information on the stochastic
processes which generate temporal variations in the series. This in-
formation is used in the development of predictive models which
ultimately improves the efficacyofwindpoweras analternative form
of energy.

The subsequent subsections will be an introduction to wind
speeds in Missouri, fractals and relationship between the two.
Thereafter, the paper gives a description of the data used in this
study. Section 3 seeks to explain the monofractal and multifractal
methodologies used and section 4 delves into the analysis of the
obtained results for each of these procedures. The final section is
the conclusion of the major findings.
missouri.edu (S. Balkissoon),
. Lupo).
Missouri’s average wind speed is approximately 4.5 m/s [23]
which is above the 3.5 m/s cut-in wind speed required for small
turbines to be operational. The wind speed value for Missouri is
higher than some states associated with the wind industry which
includes Texas, Wyoming, Illinois, California and Colorado [23]. In
2018, six percent of Missouri’s electric generation came from
renewable energy. Approximately two-thirds of this renewable
generation came from wind energy. The wind power generation
capacity of 1000 MW was derived from 500 turbines [1]. There is
most wind energy potential in the NorthWest regions ofMissouri, as
seen in Fig. 1 which is an 80 m average annual wind speedmap [25].

1.2. Fractals

Fractals are associated with objects that are self-similar, that is,
they have the same patterns which occur at different scales and
sizes. Mandelbrot [21] stated that is a form of symmetry which is
invariant under translations and dilations. These have many details
which occur at arbitrary small scales which are too complex to be
represented in Euclidean space. Classical geometry and calculus is
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Fig. 1. AWS true power and NREL’s wind resource map of Missouri.
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not suitable for studying fractals and fractal geometry [8]. Ac-
cording to Mandelbrot, when the fractal or Hausdorff dimension is
strictly greater than the topological or Euclidean dimension, the set
is considered to be fractal and have fractal geometry [8]; the
assigned fractal dimension measures the roughness of the surface
[32]. In particular, fractal dimensions can be non-integers which
reflects the fact that fractals inhabit space in qualitatively and
quantitatively different ways than smooth geometric objects. For
example, a smooth curve in the plane is well-approximated by a
straight tangent line at each point and hence one dimensional. A
fractal, by contrast, does not admit a linear approximation at each
point and can have a Hausdorff dimension between one and two.
Since the fractal dimension measures the irregularities of a set at
various scales, a shapewhich has a higher fractal dimension is more
complex and rough than one that has a lower fractal dimension
[3,28].

Fractals can be observed in nature, geometry and algebra as well
as mathematical physics. In nature fractals can be seen from small
scales such as the scale of two to three atomic diameters in metallic
glass alloys [24] to large scales of one hundred thousand light years
in a spiral galaxy. Coastlines were characterized as fractal in nature
by Mandelbrot; the fractal dimension of a Norwegian coastline was
determined to be 1.52 and for a British coastline it was given as 1.31
[9,28] whilst the fractal dimension of the space distribution of gal-
axies less than fifty million light years is 1:23±0:04 [26]. Fractals can
also be seen in the nonlinear and chaotic behaviour of river and
drainage networks aswell as hurricaneswhich is scale invariant [32].

In geometry, fractals are observed in for example, the triadic
Koch Curve and the Sierpinski Triangle; these are intermediate
shapes of Euclidean Geometry. The Koch Curve is generated from a
less detailed starting shape or initiator in which a similar task is
added on smaller scales thusmaking the curvemore detailed [9,18].
That is, each segment of the generator shape is replaced by a
smaller copy of the generator itself. Its fractal dimension is 1.26
which is indicative of its infinite length and its area being 0 [8]. The
Sierpinski Triangle is generated by the iterative removal of the
middle triangle from the previous reconstruction. The fractal
dimension of the Sierpinski Triangle is larger than the Koch Curve,
its value is 1.58.

We also see fractals in algebra. They are seen in the beginning of
modern Mathematics with the middle third Cantor Sets. These sets
display properties of self-similarity and have fine structures in
which there are details in arbitrary small scales [18]. This
uncountably infinite set is formulated from removing in an iterative
manner, the middle third of each interval [8] until the limit of an
infinite set of clustered points known as Cantor “dust” is reached
[32]. Since from this process, there are 2n subsets for n iterations
having a magnification factor of 3n, the fractal dimension given by
D ¼ logð2nÞ=logð3nÞ is 0.631 [32]. The Mandelbrot Set, which led to
the development of complex dynamics, is also fractal. This set is
defined as all the complex numbers, c for which the function fcðzÞ ¼
z2 þ c stays bounded [19]. The image of the Mandelbrot Set shows
all the values of c for which the sequence is bounded and all the
values of c outside this set for which fcðzÞ goes to infinity. It also
shows the rate of which the function tends to infinity as seen in the
depiction below, Fig. 2 (c).

There are also fractal connections between non-linear differ-
ential equations such as the Navier-Stokes equation [21]. The linear
methods of autocorrelation function analysis and spectral analysis
are unreliable in the determination of the complex behaviours of
non-stationary time series [27]. In fluid motion, turbulence is given
as effects of singularities of the NaviereStokes Equation [21]. To



Fig. 2. Fractals.
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study this equation, fractal andmultifractal models were developed
in which the Hausdorff dimension was determined.

1.3. Fractals and wind speed

To evaluate the wind power and wind potential energy, the
analysis of themeanwind speeds and frequencydistributionneed to
be done. This is done to mitigate the problems associated with the
intermittency of the wind speeds records, in terms of its the spatial
and temporal variations, when trying to integrate wind power into
electrical grids [7]. The internal dynamics of the wind speed time
series, that is, its monofractal and multifractal characteristics are
used to give information on the stochastic processes which are the
generators of these temporal variations. This information is useful in
the development of predictive models both theoretical and
computational in nature [7]. These wind power forecasting tools
increase the efficiency of wind power as an alternative renewable
source of energy by reducing the unexpected variations in the wind
energy conversions systems (WECS) power generation, thus,
reducing operational costs in the electricity generation by reducing
the requirements of larger primary reserve capacity [6].

2. Data

In this study,10mindailywind speed time series datameasured in
m/swasused inMissouri,USA for theyearof 2009 [12]. Three stations
were used in this investigation; Columbia, Blanchard and Neosho.
Their location are 038�53:2700N latitude and 092�15:8200W longi-
tude, 040�33:5700N latitude and 095�13:4700W longitude,
036�52:7300N latitude and 094�25:5700W longitude respectively
with corresponding site elevations being 255, 328 and 373 m. These
are located in North, Central and SouthMissouri as seen in Fig. 3. The
anemometerswere placed onvariousheights and orientations on the
towers. For Columbia, Blanchard and Neosho, the anemometer ori-
entations were 120�and 300�for each of the various sites’ tall tower
heights of68,98,147mand61, 97,137mand50, 70,90mrespectively.
Channels 1, 3 and 5 are the wind speed times series of the three
consecutive heights at an orientation of 120� and Channels 2, 4 and 6
arewind speed values obtainedwhen anemometerswere oriented at
300�. The larger of the wind speed value at each time step for all the
heights were taken for all of the stations. These were labelled
Columbia68, Columbia98 and Columbia147, Blanchard61, Blan-
chard97 and Blanchard137, Neosho50, Neosho70 and Neosho90.
These time series for January to December of 2009 were used in the
evaluation of the fractal characteristics of wind speeds within
Missouri.
3. Methodology

3.1. Monofractal analysis: Rescale Range Analysis (R/S analysis)

There are multiple methods of determining the fractal di-
mensions of data sets which include the box-counting method,
variation method and the Hurst R/S method [3]. The R/S method
gives the scale free irregularity and the long term memory or cor-
relation of the series [3]. This method was used by Hurst to
compare observed ranges of natural phenomena including river
discharges, mud sediments and tree rings [9]. The scale properties
of geophysical variables such as precipitation, temperature, sea
level and sunspots using R/S analysis were investigated by Lovejov
and Mandelbrot in 1985 and Rangarajan and Sant in 2004 among
others [30].

This paper uses the R/S method. To explain the general idea,
suppose there is a time series xi, i ¼ 1;2;3;…;N. The range Rn is
defined to be the difference between the maximum and the min-
imum accumulative departure from the mean of some n<N points.
The dimensionless ration ðR=sÞn is given by (1).

ðR=SÞn ¼
1
S

"
max

n

Xn
i¼1

ðxi � CxDÞ�min
n
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i¼1
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#
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From (1), as n/∞, ðR=SÞn/CnH where C is a constant and H is the
Hurst Exponent. Thus, from this power law relationship,



Fig. 3. Study locations within Missouri.
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lnðR=SÞn ¼ lnðCÞ þ H lnðnÞ: (3)

Given (3), a slope of the simple regression line of lnðR=SÞn against
lnðnÞ will give the Hurst Exponent H or the degree of correlation.
Various values of H corresponds to the following characteristics
wind speeds [4].

1. If H ¼ 0:5, then wind speed is random or uncorrelated where
future data is not determined by current data. This series is
called a Brownian time series or a random walk. This series
which display no memory is considered to have ‘white noise’.

2. If 0:0<H<0:5, then anti-persistence or mean reverting series:
the wind speeds have long term negative auto-correlation in
adjacent pairs. That is a long term switching between high and
lows among adjacent pairs in the series for a long time into the
future. A high will be followed by a low and then a high etc. Thus
we will have a more rugged or less smooth time series. This
occurs because the future values have a tendency to return to
the long-term mean. The time series is considered to have ‘pink
noise’ which is related to turbulence.

3. If 0:5<H<1:0, then persistence: the wind speeds have long
term positive auto-correlation in adjacent pairs. That is a high
value in the series will be followed by another high value for a
long time into the future.

4. If Hz1 or H ¼ 1, then there is strong predictability wind speeds
or the wind speeds are predictable.

From [20]’s box argument, it is given that the local fractal
dimension for self-affine records, D, is D ¼ 2� H.
3.2. Multifractal analysis: Multifractal detrended fluctuation
analysis (MF-DFA)

The MF-DFA method was used to study turbulent signals. This
procedure was applied to resistor network model, DNA sequences,
satellite and microscopic images, financial time series including
stock price fluctuation, traffic time series, quantum dynamical the-
ory, weather records, cloud structure, geology and music among
others [13,29,31,33]. The four principle methodologies relating
fractal theory to measures are the moment method, the histogram
method, themultifractal detrendedfluctuation analysismethod and
wavelet transform modulus maxima method [29]. These analyses
are done when the fractal dimension changes with scale and when
the time series is non-stationary. There may be multiple scaling
exponents which represents different fractal subsets of the series
[13]. Unlike the R/SAnalysismethod, theMF-DFAmethod can detect
non-spurious long-range correlations of a time series when there is
non-stationary trends superimposed on it [16,22,33]. The scaling of
these intrinsic fluctuation of the time series can be determined
despite knowing the origin and the shape of the trends present [22].
This is especially important for this study as the time resolution of
thewind speed data sets is 10min and the analysis is done for a time
window of at most one year. Thus the annual trend cannot be esti-
mated and removed from these datasets and as such the trend
removing capabilities of MF-DFA is essential [17]. Also, when
compared to othermultifractal methodologies, theMF-DFAmethod
is less sensitive to the length of the time series and it gives more
reliable results using a sample of over 4000 data points [2].

In this paper the MF-DFA is done. To explain the general idea,
consider a non-stationary time series of length N, xðiÞ; i ¼ 1;2;3;…
;Nwith compact support (i.e. x(i)¼ 0 for an insignificant fraction of
the series) [13]. The trajectory or profile preserves the variability of
the time series whilst simultaneously reducing the noise by
removing the non-stationary effects [10]. This profile is given by
YðiÞ, (4) [13].

YðiÞ¼
Xi

k¼1

½xðkÞ� x� (4)

This trajectory is partitioned into Ns non-overlapping intervals of
equal length, s, that is, Ns ¼ QN=sS. However, N need not be divisible
by s thus part of the seriesmay be unaccounted for as the possibility
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exist that QN =sS:< ðN =sÞ. To rectify this, a subdivision is done on the
right hand side of the sample. This gives a total of 2N partitions or
intervals [13]. The local trend is determined by using a polynomial
of degree m to fit the trajectories in each of its partitions. The
variance is calculated from (5) for the two sets of partitions [13].
F2ðs; vÞ¼

8>>>>><
>>>>>:

1
s

Xs
i¼1

½Y ½ðv� 1Þsþ i� � yvðiÞ�2 for v ¼ 1;2;3;…;Ns

1
s

Xs
i¼1

½Y ½ðN � ðv� NsÞsþ iÞ � yvðiÞ�2 for v ¼ Nsþ1;…;2Ns

(5)
where yvðiÞ is the fitting polynomial for that partition. Finally, the
qth order fluctuation, FqðsÞ, is calculated from the average of all the
partitions [13]. Please see (6).

FqðsÞ¼
2
4 1
2Ns

X2Ns

v¼1

h
F2ðs; vÞ

iq
2

3
5

1
q

(6)

where qs0 and s � mþ 2,m is the degree of the fitting polynomial.
The scale was chosen to be 10: 100 andmwas chosen as 1. Thus the
inequality for which FqðsÞ was defined, holds.

The multifractality of the time series is cause by different long
term correlations in the sample. MF-DFA can be used to determine
multiple scaling exponents and spectrum parameters to classify the
complexity and dynamics of the time series unlike monofractal
analysis which characterizes the scaling property by one exponent
for the entire data set. The four multi-fractal analyses done in this
paper are as follows:

1. logðFqðsÞÞ against logðsÞ where s is the scale and Fq is the qth

order fluctuation average. If q is negative then small fluctuations
is enhanced and if q is positive then it enhances large fluctua-
tions. To determine if long term correlation exist in the signal
there should be a power law variation where Fq increases as a
power of s. Thus, the generalized Hurst Exponent is the slope of
this log-log plot as Fqzshq [11,13,14] and there is a linear relation
in log plot for the various q values.

2. hq against q or the dependence of the general Hurst Exponent on
q. For monofractal time series hq is independent of q [11]. The
local trend of each segment is calculated from the least square fit
of the series and the variance of each segment. Since the scaling
does not change, the trend over each segment is the same. For
multifractal time series hq is dependent on q. This dependence
of h on q is caused by the fluctuations of scales both large and
small. For large positive q values, there will be larger deviations
from the least square fit thus larger variances F2ðs; vÞ [11]. These
large variances is also reflected in the qth order fluctuation and
as such there is a relation between the large fluctuations and the
Hurst Exponent, hq. Large fluctuations for multifractal time se-
ries implies smaller hq values [13]. Similarly, for negative values
of q, there are smaller variances and small fluctuations are
characterized by larger scaling exponents hq [13]. Thus we have
for a monofractal data set there will be one exponent for all
scales where as for a multifractal time series, hq monotonically
decreases with increasing q.

3. tq against q or the qth order mass exponent. tq is called R�enyi
Exponent. If tq varies linearly with q, then the time series is
monofractal whilst the signal is multifractal if it has non-linear
variations with q [7,13,14]. The relationship between this expo-
nent and the Hurst Exponent is tq ¼ qhq � 1. This relationship
between the two multifractal scaling exponents was proved in
Refs. [13] by considering a stationary positive and normalised
sequence, substituting its simplified version of the variance,
standard fluctuation analysis into (6) and comparing it with the
box probability for the standard multifractal formalism for the
normalised series.

4. f ðaÞ against a or the multifractal spectrum. If the signal is a
single scale fractal series then f ðaÞ is a constant. A bell-like
shape is given if the signal displays multifractal tendencies
[11]. This function is related to R�enyi Exponent by the relation
f ðaÞ ¼ qa� tq where a is H€older Exponent and a ¼ dtq

dq [13].
Since, tq ¼ qhq � 1, a ¼ hq þ q dh

dq and f ðaÞ ¼ q½a � hq� þ 1. Some
multifractal spectrum parameters include position of max a0,
width of spectrum W and skew parameter r. The width of the
spectrum is given by W ¼ amax � amin and the skew parameter
is r ¼ amax�a0

a0�amin
[7]. The width of the spectrum determines the

degree of the multifractality of the signal where a larger spec-
trumwidth coincides with greater dynamics of the data set and
stronger multifractality [7,15]. The skewness parameter is clas-
sified as r ¼ 0 for symmetry, r>1 for a right skewed spectrum
and r<1 for a left skewed spectrum. The dominant fractal
exponent describing the scaling of small or large fluctuations is
also determined by r. For a right skew spectrum, the fractal
exponent describes the scaling of small fluctuations whilst large
fluctuations are described by a left skew spectrum [7]. The more
complex andmultifractal signals are signals where a0 andWare
large values as well as r>1 or is right skewed [7].

4. Analysis of results

4.1. Raw data

The monthly mean wind speeds for the various channels in
Columbia, Blanchard and Neosho were plotted in Fig. 4. Average
max wind speeds were recorded and determined for January to
December of 2009 in Columbia and for January to August and
January to October in Blanchard and Neosho respectively. From the
plot, we see a similarity in terms of the wind speed patterns for all
three stations. We see that the months of January to April and
October to December are peak months whilst there is a decrease in
average wind speeds during the period of May to September. From
the average wind speeds in Columbia and Neosho, it is evident that
the maximum to minimumwind speeds for each month coincided
with the highest to lowest height levels, Columbia147 to
Columbia68 and Neosho90 to Neosho50. For Blanchard, this holds
true with the exception of intermediate height time series, Blan-
chard97, which had the lowest monthly averages of all the stations.

It was observed that the maximum wind speeds of all the sta-
tions for all the months came from the greatest tall tower heights of
Blanchard137 and Columbia147. Also, with the exception of



Fig. 4. Average max wind speeds in columbia, blanchard and neosho in 2009.
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Blanchard97, the lowest average wind speeds came from the
Columbia and Neosho stations at the lowest heights of 68 m and
50 m respectively.
4.2. Monofractal analysis

Figs. 5(a)e(c) show the monofractal Hurst Exponents for
Columbia, Blanchard and Neosho respectively in 2009. From the
results obtained there is no clear distinction in the Hurst Exponent
values from the various series for all the stations thus indicating
that the fractal dimensions of the wind speeds did not alter
significantly with increasing heights. The fractal dimensions were
consistently in the range of 1.1e1.3 for all the stations and months.
This may have been as a result of similar variations of wind speeds
with height. As such we expect the Hurst exponents and the fractal
dimensions to be similar.

In Fig. 5(c), it is observed that Neosho had the least monthly
variations in the fractal dimensions for all of the heights when
compared to the other two stations; its fractal dimensionality was
determined to be 1.2 (to one decimal place). However of all the tall
towers, this station gives the wind speeds taken over the smallest
range of heights. It was determined that the numerically small
variations in fractal dimensions of the other two stations, given by
Figs. 5(a) and (b) were not similarly changing with height and
months when compared to Fig. 4. For Columbia, the greatest fractal
dimensions occurred in February and December at the lowest
height of 68 m and in August at heights of 98 m and 147 m whilst
the least fractal dimensions occurred in January for all height levels.
Similarly, for Blanchard the fractal dimension of approximately 1.3
was observed for all heights in February. This was also noted in July
and August with the exception of Blanchard61 and Blanchard97
respectively.

The Hurst Exponents were determined to be in the range of
0.7e0.9. R/S Analysis was used to show that the wind speeds
investigated in this study does not follow a random Gaussian pro-
cess but rather a long term autocorrelation. Since 0:5< H< 1:0, this
implies that the wind speed had a long term positive autocorrela-
tion in adjacent pairs where a high value will be followed by
another high value for a long time into the future. That is, its fluc-
tuations are interconnected because there exist a statistical order in
the dynamics of the system [30]. There will be less peaks than a
random series and it will be less rugged than an anti-persistent
system [4]. This is consistent with a study done by Fortuna and
Guariso [11] in which daily and monthly wind speed time series
were analyzed from regions within the USA and Italy using two
methods, Box Counting Method, D and the Hurst Exponent R/S
Range Analysis Method,H. The wind speeds for these regions were
determined to be fractal also because the average D values were
1.19 and 1.41 for daily and hourly mean wind speeds respectively.
More complexity was discovered for hourly wind speeds than the
daily wind speeds as indicated from its higher fractal dimensions.
This is indicative of greater details and finer structures which the
greater temporal resolution provides. This numerical value is in
agreement with our study even though different locations and time
scales were used.
4.3. Multifractal analysis

As in Figs. 6(a)e(c). Scaling function order Fq, it is evident that
for all of the heights, there were increases in Fq as q values were
increased from �5 to 0 to 5 for all of the three tall tower stations.
We see that lnðFqÞ varies linearly with lnðsÞ for a scale of 10e100
days with the generalized Hurst Exponent being the slope; this
indicates a scale dependence which is characteristic of multi-
fractality. Also, it is observed that as s increases, the distances
among the different q values decreases. This occurs because for
small segments (small s values), localized periods of small fluctu-
ations given by negative q values, can be differentiated from pe-
riods of large fluctuations given by positive q values. This is unlike
large segments (large s values) which includes both small and large
fluctuations where the tendency for the magnitude differences to
cancel occur [27]. The hypothesis of the multifractal nature of wind
speeds were also supported by the study of Fortuna and Guariso
[11] for dailymeanwind speeds recorded at Aberdeen from 2000 to
2012 in which the regression lines varied for differing q orders.
Thus, the Hurst Exponents given by the slope of the plots were
changing also for these sets. Similar results were also observed in
another study in Northeastern Brazil, Petrolina for both hourly
wind speed and max wind speed [7]. Thus we see that for temporal
variations of data ranging from the 10 min to daily time series, all
showed multi-fractal characteristics.

As seen in Figs. 7(a)e(c), dependence of the Generalize Hurst
Exponent, it is seen that q increases as hq decreases monotonically
for all height levels. This is also noted in the slopes of Figs. 6(a)e(c).
Larger fluctuations corresponded with smaller hq values and
similarly, smaller fluctuations corresponded with larger scaling



Fig. 5. (a) Hurst Exponents for Columbia in 2009 (dark red - Columbia68, red-Columbia98, green- Columbia147). (b) Hurst Exponents for Blanchard in 2009 (black- Blanchard61,
blue- Blanchard97, purple- Blanchard137). (c) Hurst Exponents for Neosho in 2009 (pink-Neosho50, grey- Neosho70, cyan-Neosho90). (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. (a) MF-DFA performed on 10 min wind speed data in Columbia for tower height
68 m - Scaling function order Fq. Plot of LogðFqÞ against logðsÞ. (b) MF-DFA performed
on 10 min wind speed data in Columbia for tower height 98 m - Scaling function order
Fq . Plot of LogðFqÞ against logðsÞ. (c) MF-DFA performed on 10 min wind speed data in
Columbia for tower height 147 m - Scaling function order Fq. Plot of LogðFqÞ against
logðsÞ.

Fig. 7. (a) MF-DFA performed on 10 min wind speed data in Columbia for tower height
68 m - Dependence of Gen Hurst Exp on q. Plot of hq against q. (b) MF-DFA performed
on 10 min wind speed data in Columbia for tower height 98 m - Dependence of Gen
Hurst Exp on q. Plot of hq against q. (c) MF-DFA performed on 10 min wind speed data
in Columbia for tower height 147 m - Dependence of Gen Hurst Exp on q. Plot of hq
against q.
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exponents. It is observed that for Columbia68, Columbia98 and
Columbia147 in the month of September, when q varied from�5 to
5, hq decreased from 1.7196 to 1.1730,1.7171 to 1.2429 and 1.8055 to
1.3216 respectively. Since there is a range of values for the various
scales for all height levels then these are indicative of multifractal
series. This is also in agreement with a study done by Kavasseri and
Nagarajan [14] for four sites with significant wind potentials in
North Dakotawhere hourly datawas taken from a cup anemometer
at a height of 20 m. They determined that for one of the sites, when
q increased from �6 to 6, the slope decreased from 0.88 to 0.6989.

The Generalized Hurst hq is related to the Hurst Exponent, H, by
hð2Þ ¼ H for stationary time series where 0< hðq¼ 2Þ< 1 [22]. For
non-stationary time series, the scaling exponent of FqðsÞ is char-
acterized by hðq¼ 2Þ>1 and the relationship between H and hq is
given by H ¼ hðq ¼ 2Þ� 1. This is proved in Ref. [22]. For
September, hð2Þ values for Columbia68, Columbia98 and
Columbia147 were determined to be 1.3536, 1.4290 and 1.4779
respectively. This indicates a non-stationary process with long
range correlation behaviour [31]. The corresponding Hurst expo-
nents as well as fractal dimensions, D, for this month and stations at
the three heights are 0.3536, 0.4290, 0.4779 and 1.6464, 1.571,
1.5221. These results gives higher fractal dimensions than the
monofractal analysis for the time series data. It also showed that
the wind speed time series are displaying long-term anti-persis-
tence correlations as in a study done by Refs. [34] in which the
multifractality of multivariate wind speed for both indoor and
outdoor records were examined.



Fig. 8. (a) MF-DFA performed on 10 min scaled wind speeds in Columbia for tower
height 68 m - q-order Mass exponent. Plot of tq against q. (b) MF-DFA performed on 10
min scaled wind speeds in Columbia for tower height 98 m - q-order Mass exponent.
Plot of tq against q. (c) MF-DFA performed on 10 min scaled wind speeds in Columbia
for tower height 147 m - q-order Mass exponent. Plot of tq against q.

Fig. 9. (a) MF-DFA performed on 10 min scaled wind speeds in Columbia for tower
height 68 m - Multifractal Spectrum. Plot of f ðaÞ against a. (b) MF-DFA performed on
10 min scaled wind speeds in Columbia for tower height 98 m - Multifractal Spectrum.
Plot of f ðaÞ against a. (c) MF-DFA performed on 10 min scaled wind speeds in Columbia
for tower height 147 m - Multifractal Spectrum. Plot of f ðaÞ against a.
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From Figs. 8(a)e(c), it is noted that R�enyi Exponents tq have
non-linear variations with q. This is also characteristic of the wind
speeds taken at the three heights of each tall tower, being multi-
fractal signals. This is also noted from the hourly non-stationary
time series MF-DFA by de Figueirdo et al. [7] between the years
2008 and 2011.

The last of the analyses is the multifractal spectrum,
Figs. 9(a)e(c). The spectra of f ðaÞ against a are not constant thus
indicating that the series are not single scale fractal signals for all
the months and height levels in Columbia, Blanchard and Neosho.
The results obtained, the signals displayed multifractal tendencies
by producing spectra of single-hump like features or bell-shapes
with the exception of June C147, July C147, Aug C98 and Dec C68,
C98, C147, Jan B97 and B137, Feb B97, Mar B97, Apr B61 and B97, July
B137, Jan N50, N70 and N90, Mar N90, Sept N70 and N90, Oct N90.
This may have been as a result of artifacts being contained in the
observational data which makes the determination of the long-
term correlations and multifractality of the records difficult.
These artifacts may include additive random noise and short term
correlations. Additive random noise can derived from the limita-
tions in the accuracy of the measuring instruments and short term
correlations can be given from the short time scale of our study. The
latter induces a strong persistence which is superimposed on the
long-range correlations [17]. These artifacts have been proven in
Ref. [17] to cause various degrees of underestimation of hq for small
and negative moments which are most affected by noise. Ludescher
et al. [17] also proved that the multifractality of the positive



Table 1
The Multifractal Spectrum Parameters for Columbia, Blanchard and Neosho for the three height levels and months in 2009.

Description Columbia, C Blanchard, B Neosho, N

Month Heights a0 amax amin w r w r w r
Jan C68 B61 N50 0.83 1.46 0.57 0.89 2.42 0.70 1.06 1.29 4.49
Jan C98 B97 N70 0.85 1.48 0.53 0.95 1.97 1.37 0.18 1.31 4.54
Jan C147 B137 N90 0.80 1.48 0.43 1.05 1.84 1.61 0.31 1.26 4.07
Feb C68 B61 N50 1.36 1.57 0.93 0.64 0.49 0.61 0.56 0.57 0.43
Feb C98 B97 N70 1.39 1.63 1.00 0.63 0.62 11.86 13.83 0.60 0.50
Feb C147 B137 N90 1.40 1.58 1.06 0.52 0.53 0.64 0.45 0.74 0.72
Mar C68 B61 N50 1.29 1.47 0.93 0.54 0.50 0.53 0.43 0.03 0.98
Mar C98 B97 N70 1.31 1.48 0.92 0.56 0.44 14.78 0.05 0.56 0.40
Mar C147 B137 N90 1.40 1.63 0.93 0.70 0.49 1.89 0.80 0.62 0.59
Apr C68 B61 N50 1.37 1.57 1.17 0.4 1.00 2.85 3.45 0.7 0.75
Apr C98 B97 N70 1.38 1.55 1.22 0.33 1.06 10.93 0.07 0.73 1.03
Apr C147 B137 N90 1.43 1.61 1.22 0.39 0.86 0.62 0.72 0.81 1.31
May C68 B61 N50 1.29 1.44 0.94 0.50 0.43 0.62 0.72 0.81 0.72
May C98 B97 N70 1.38 1.80 0.95 0.85 0.98 0.72 0.60 0.99 0.90
May C147 B137 N90 1.45 1.82 1.01 0.81 0.84 0.73 0.62 0.85 0.55
June C68 B61 N50 1.29 1.68 0.76 0.92 0.74 1.04 0.65 0.96 0.68
June C98 B97 N70 1.35 1.69 0.83 0.86 0.65 1.04 0.65 0.99 0.77
June C147 B137 N90 7.79 8.69 0.86 7.83 0.13 1.09 0.68 2.09 1.38
July C68 B61 N50 1.34 1.68 1.06 0.62 1.21 0.85 0.77 0.8 0.74
July C98 B97 N70 1.40 1.75 1.10 0.65 1.17 0.85 0.77 0.66 0.61
July C147 B137 N90 1.57 2.96 1.11 1.85 3.02 1.73 0.35 0.65 0.59
Aug C68 B61 N50 1.30 1.46 0.97 0.49 0.48 0.75 0.56 0.81 0.56
Aug C98 B97 N70 1.62 2.89 1.03 1.86 2.15 0.75 0.56 0.74 0.45
Aug C147 B137 N90 1.54 1.89 1.09 0.8 0.78 0.76 0.46 0.8 0.74
Sept C68 B61 N50 1.45 1.94 0.97 0.97 1.02 8.46 0.11
Sept C98 B97 N70 1.53 1.92 1.04 0.88 0.80 7.34 0.12
Sept C147 B137 N90 1.58 2.01 1.11 0.9 0.91 0.89 1.07
Oct C68 B61 N50 1.29 1.70 0.92 0.78 1.11 6.08 0.13
Oct C98 B97 N70 1.32 1.53 0.94 0.59 0.55 0.70 0.94
Oct C147 B137 N90 1.34 1.52 0.91 0.61 0.42 0.69 0.77
Nov C68 B61 N50 1.37 1.78 1.05 0.73 1.28
Nov C98 B97 N70 1.43 1.88 1.07 0.81 1.25
Nov C147 B137 N90 1.46 1.58 1.18 0.92 1.81
Dec C68 B61 N50 2.70 12.19 0.94 11.25 5.39
Dec C98 B97 N70 1.75 4.06 1.06 3.00 3.35
Dec C147 B137 N90 2.92 13.45 1.05 12.4 5.63
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moments may be corrupted. These graphical anomalies of hq were
noted in our results corresponding with the spectra which did not
depict a bell-like shape. This is due to the fact that f ðaÞ is obtained
from Legendre transform which utilizes information on the mo-
ments [17].

The MF-DFA parameters of W and r were determined from the
singularity spectrum as given by Table 1. The width of the spectrum
is a measure of multifractality of the time series where a large
width characterizes a finer signal structure which is more multi-
fractal in nature. A width which tends to zero, however, is repre-
sentative of a series that has one scaling exponent or one that is
monofractal. From the results of this study, there was no indication
of a consistent trend showing that the multifractality increases
with increasing height from C69 to C147, B61 to B137 and N50 to
N90. From the asymmetry parameter,r, for C68 to C147, some of the
spectra are left skewed whilst others are right, also indicating that
there is no trend of a dominant fractal exponent as the heights are
increased. For Blanchard, predominantly, the dominant scaling is of
large fluctuations as described by left skew parameter r. This is
indicative of a the prevalence of a fractal exponent describing a
structure that is less fine.

It was seen in Kavasseri and Nagarajan [14] that the spectrum
widths for their data taken at height of 20 m were 0.4475e0.4862.
In de Figueirêdo et al. [7] the spectrum widths were 0.24 and 0.51
for average and maximum wind speed data taken from a meteo-
rological station of altitude 370.46 m. From this study, the spectral
widths for Columbia’s single humped multifractal spectra, at tower
heights of 68, 98 and 147 m and site elevation of 255 mwere given
by 0.33 �W � 1.05. This range is similar to the spectral width
parameter values obtained by Laib et al. [15] for 119 stations in
Switzerland using 10 min time series data; W was ranged between
0.206 and 1.15. For Blanchard and Neosho, the single hump widths
ranged between 0.53 to 1.09 and 0.56 to 0.99 with the exception of
Mar B137 and June N50 whose width values was 1.89 and 2.09
respectively. These differences in thewidths from the three stations
do not show as much variations as the study done by Ref. [10] in
China using daily wind speed data. However, they represent the
non-universal multifractal characteristic of wind speeds due to
varying space and time dynamics. The parameters changes with
location and heights levels and is as a result of different atmo-
spheric circulation patterns. This is especially valid for wind speeds
as seen from a climatic study of 31 years done by Ref. [2], using
meteorological variables of precipitation, global radiation, wind
speed, relative air humidity and air temperature, the greatest dif-
ferences in the widths of the spectra were observed for wind
speeds between Polish sites. The irregular fluctuations and
complexity of the wind speeds is dependent on numerous factors
which includes temperature, pressure gradient, turbulence and
topography of the various sites [34].

5. Conclusion

It was determined that winds speeds within Missouri, using
monofractal analysis, were determined to be persistent as the Hurst
exponent was greater than 0.5 for the three stations at the various
height levels for all the months in 2009 using 10 min data. There
were no consistent increases in the fractal dimensions as the height
levels were increased nor were they changes in the fractal
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dimensionwith months which corresponded with the averagemax
wind speeds for the three stations.

From the MF-DFA, the wind speeds in Columbia, Blanchard and
Neosho were determined to be multifractal in nature as there were
changes in the fractal dimensions with scales. The fractal di-
mensions of the time series using multifractal analysis were
determined to be greater than these values determined using
monofractal analysis. However, the multifractality of the data sets,
determined from the widths of the inverse parabolic shaped
spectra, did not show any consistently increasing trend with
heights which would have been indicative of greater complexity
and finer structures of the wind speed records. The range of the
widths which changed from various tower locations, reflects the
non-universal multifractal characteristics of wind speeds and the
different atmospheric circulation patters. From the asymmetry
parameter they were no evidence of a dominating fractal exponent
as the heights were increased.

Future work entails forecasting using Empirical Dynamical
Modelling (EDM), having already established in this paper that the
natural system of wind speeds from tall towers within Missouri are
complex, dynamical and chaotic. In EDM, the wind time series will
be used to construct the attractor from a mathematical theory
developed by Takens. The dynamics of the system can be deter-
mined by a single time series as shown from Takens’ embedding
theorem. From the embedding theorem, each variable contains
information about the other variables and thus, the wind speed
time series and its time lagged co-ordinates will be utilized to study
the system [5].
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