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a b s t r a c t

The chaotic characteristics of the tall tower wind speed data within Missouri was investigated using both
quantitative and qualitative methodologies. The phase space diagrams were constructed using the
method of time delay. The two parameters needed in the construction of the attractor are the embedding
dimension and the time delay. The former was determined using the Cao Algorithm and the latter by
Average Mutual Information (AMI). Qualitatively, the phase portraits display chaos for all the wind speed
time series for the various stations and height levels. They did not illustrate periodicity nor were they
random motions, rather, they depicted a single attractor representative of chaos. Quantitatively the
Largest Lyapunov Exponent (LLE) was evaluated. It was determined that for the Columbia station the
wind speeds display chaotic characteristics representative of the positive LLEs. However, the increasing
level of chaos characteristics did not coincide with the increasing height levels of the tall tower.
Thereafter, a simple non-linear prediction algorithm was used to forecast wind speeds using a moving
window. The attractor was constructed using the first 56 days and the subsequent 6 h or 36 (10min) time
steps were predicted. The preceding forecast was done when the attractor was reconstructed using the
training data of 56 days starting from a 6-h delay from the previous run. The RMSE, MAE and Correlation
were investigated for the model with the errors evaluated cumulatively for all of the 1st through 36st

predictions. It was determined that the errors increase as the forecasting steps increased for all stations
and height levels. The RMSE plateaus at higher wind speeds for increasing height levels with the
exception of the station, Neosho, where it plateaued at all height levels at approximately 3.0 ms�1. For
Columbia at all height levels, after the 20th time step or 3.33 h, the model's normalized errors exceeds 1
or 100%. However, using a 50% normalized error cap, it was noted that these values occurred for Co-
lumbia's height levels after the 1st, 2nd and 3rd time steps respectively. For Blanchard, this value was
given by the 2nd time step for both heights whilst for Neosho, at all heights this percentage occurred
after at most, 2 time steps. From the Lyapunov exponent, the prediction horizons or the time limits to
obtain accurate predictions from the chaotic systemwere determined to be 6 time steps for all the height
levels in the Columbia station using a 95% confidence band. When a range of confidence bands was used,
it was shown that for the 90% confidence, this value was decreased to 4 time steps. This model was
compared to the benchmark model of persistence where it was determined that the EDM is comparable
to persistence and it beats it in the very short-term range of one time step for Columbia and Blanchard.
Seasonality and diurnal cycle analyses were also accomplished. Seasonality was investigated by slicing
the results every 6 h or extracting every 36th forecast error. It was shown that four of the eight stations'
height levels had the season of summer incurring the lowest magnitude of average errors and standard
deviations. The diurnal cycle was examined by extracting every four of the 6 time slices done previously.
The time of day was analysed by lagging these slices by 6, 12 and 18 h. It was determined that there was
no evident trend where a particular time of day the model incurred more errors and had greater
standard deviations for all stations and heights.
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1. Introduction non-linear prediction method, referred to as “Lorenz's method of
The prediction of wind speeds can be categorised in either
physical, statistical or hybrid methods. The physical methodologies
are mathematical models that utilize large amounts of data from
numerical weather prediction (NWP). The statistical methods,
however, can be classified as either time series, spatial correlations
or artificial intelligence procedures whilst hybridmethods combine
two or more approaches [8]. Alternative methodologies to con-
ventional predictive methods include the nearest neighbor method
of chaos theory, artificial intelligence's neural nets as well as
wavelets [19,26].

Chaos theory methodologies are employed in the short-term
prediction of forecasting meteorological variables such as wind
speed. Short-term wind speed prediction is one of the four tem-
poral ranges of forecast. It is where forecasts are made from one
hour to two days ahead and they are used for economic load
dispatch planning [8]. This short term prediction is especially
important as the adjustments of power generation to a consistently
changing load is required and wind is a variable power source. This
will ultimately contribute to a steady power supply [15]. These
methodologies are sorted after when initial data, needed to build
models from first principle is lacking [10]. Thus the time seriesmust
be established as chaotic. That is, as defined in Refs. [7,19], it is a
simple non-linear deterministic system, which is sensitively
dependent on its initial conditions. Such systems display random
and complex behaviours. Neural nets use historical data and may
use a back propagation technique to adjust its weights. A forecast
function is then used to predict future variables using past time
series inputs [26]. Finally, wavelets decompose the time series into
its various components and then forecast using a weighted sum of
these wavelets [26]. These methods have also been combined in
complex dynamics forecasting [26].

Natural systems, however, are complex and dynamical, often
involving many variables that cannot be measured with sufficient
accuracy. If statistical time series models are utilized, these diffi-
culties necessitate the use of non-linear approaches [6] as classical
regression analysis cannot fully represent the underlying complex
dynamics of especially a chaotic series [26]. A property of non-
linear systems is state dependency, which can be defined as the
changing relationships among interacting variables with different
states associated with the dynamical system [6]. The non-linear
statistical methods originates from state space reconstruction
which is the lagged co-ordinate embedding of the time series.
These methods recover the dynamics of the time series instead of
using a set of governing equations. These methodologies are called
empirical dynamical modeling [6].

In a study by Ref. [28], many chaos identification methods are
used in the determination of a chaotic series. This is done because
wind speed has complex characteristics of deterministic and
random signals. There are chaos identification methods that are
based on phase space reconstruction, which include the phase di-
agram, correlation dimension and the largest Lyapunov exponent
[28]. The phase space method is a qualitative direct chaos identifier
method and the correlation dimension and the Lyapunov exponent
methodologies are quantitative and direct procedures [29]. If an
attractor is non-periodic (the motion of the system never repeats),
finite dimensional and generated by deterministic dynamics, then
it is a strange or chaotic attractor. Two points on this attractor at a
time will be arbitrarily apart from each other at a later time, that is,
nearby points in phase space separate at an exponential rate. This is
given by the positive largest Lyapunov exponent [2]. In this paper,
some of these methods will be employed to identify chaos before a
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analogues” [14], is conducted.
The subsequent section, section 2, describes the data utilized in

this study. Section 3 outlines the various methodologies used,
which are the generation of the wind speed duration curve, the
reconstruction of phase space and the determination of the pa-
rameters of the embedding dimension and the time delay, the
determination of the largest Lyapunov exponent, the forecasting of
wind speeds using a non-linear prediction algorithm and the ex-
amination of the seasonality and diurnal cycle of the model runs.
Section 4 provides the results of the various methods conducted
before concluding in section 5.

2. Data

This study uses ten-minute interval daily wind speed time series
data recorded in 2009, in ms�1, for Columbia, Blanchard and
Neosho, stations in Missouri [11]. Columbia is located in 038�

53.2700 N latitude and 092�15.8200 W longitude and has a site
elevation of 255m. Blanchard is located 040� 33.5700 N latitude and
095� 13.4700 W longitude and has a site elevation of 328m. Neosho
is located 036� 52.7300 N latitude and 094� 25.5700 W longitude
with a site elevation of 373m. Please refer to Fig. 1. The anemom-
eters were placed on various heights and orientations on the
towers. For Columbia, Blanchard and Neosho, the anemometer
orientations were 120� and 300� for each of the various sites’ tall
tower heights of 68, 98, 147m and 61, 97, 137m and 50, 70, 90m
respectively. Channels 1, 3 and 5 are the wind speed times series of
the three consecutive heights at an orientation of 120� and Chan-
nels 2, 4 and 6 are wind speed values obtained when anemometers
were oriented at 300�. The larger of the wind speed value at each
time step for each height level were taken and labelled as Colum-
bia68,Columbia98 and Columbia147, Blanchard61, Blanchard97 and
Blanchard137, Neosho50, Neosho70 and Neosho90.

3. Methods

3.1. Wind speed duration curves

Wind speed duration curves (WSDC) provide a simple way to
visualize the distribution of wind speeds recorded at the observa-
tion sites [20]. They are essentially the graph of the wind speed's
cumulative distribution function over the time interval. By
convention, the independent variable is along the vertical axis and
the horizontal axis is scaled to be a percentage.

More precisely, suppose that fxigni¼1 is a time series of wind
speeds and let fzigni¼1 be the rearrangement of these values so that
they are in ascending order: z1 < z2 </< zn. Here it is assumed for
simplicity that the readings are distinct and the observation times
are evenly spaced. Then the percentage of time in which the wind
speed is greater than or equal to zi can be approximated by Equa-
tion (1).

FðziÞ¼100
�
nþ 1� i
nþ 1

�
(1)

The corresponding WSDC is constructed by plotting the points
ðFðziÞ; ziÞ for i ¼ 1;…;n.

3.2. Takens’ theorem and reconstruction of the phase space

Assume that the weather patterns at the observation sites are
governed by a deterministic dynamical system set on a smooth D-



Fig. 1. Study locations within Missouri.
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dimensional compact manifoldM (the phase space). Let 4t : M/M
denote the corresponding flowmap, so that, if the system is initially
in state m2M, then 4tðmÞ is its state after time t.

Weather forecasting is thus equivalent to determining 4t .
However, it is typically difficult to do this directly as the dynamical
system is hard to formulate explicitly and it is likely to be non-
linear, high dimensional, and chaotic. Accurately measuring the
many variables involved may also prove impractical.

In the seminal paper [27], Takens gives a number of mathe-
matical results addressing this issue. Suppose that X : M/ R is a
scalar-valued observable quantity; for the present study, this will
be the wind speed. Under mild assumptions on the regularity of X,
Takens shows that it is possible to reconstruct 4t from the time
evolution of the observable Xð4tÞ. Specifically, by [27, Theorem2],
for a generic time delay t � 0 and time t, the mapping

Ft : m1ðXð4tÞ; Xð4tþtÞ; …; Xð4tþ2DtÞÞjm (2)

constitutes a smooth embedding of M into R2Dþ1. Moreover, in [27,
Corollary5] it is established that, for genericm2M, the u-limit sets
of FtðmÞ and 4tðmÞ are diffeomorphic. Stated more plainly: if the
full system has an attractor, the topological and differential struc-
ture of that attractor can be inferred from the longtime behavior of
the time-delay mapping Ft .

Suppose now that fxigni¼1 is a time series representing readings
of the observable Xð4tÞ at equally spaced times t1 < t2 < /< tn. For
candidate embedding dimension d and time delay t, in analogy to
(2), one forms the Takens reconstruction vector

yi ¼ðxi; xiþt; …; xiþðd�1ÞtÞ (3)

with index i ¼ 1;2;…;N and N ¼ Nðt;dÞ ¼ n� ðd � 1Þt. Note that
in what follows the dependence of N on t and d is often suppressed
for the sake of simplifying the notation. Provided that d � 2Dþ 1,
Takens' embedding theory can then be used to predict the dy-

namics of the original system from the delayed time series fyigNi¼1.
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This leads to the statistical problem of choosing the parameters
t and d, which has been the subject of considerable research. Even
though Takens’ theorem holds for a generic time delay, it is well
known that some care is required in selecting twhenworking with
experimental data. If the time delay window is too narrow, then the
attractor will be projected into a dimension that is too small. Were
this to occur, then xiþ1 will not contain substantially new infor-
mation relative to xi, making predictions based on the time series
unreliable [25]. Conversely, if the window is too large, the com-
ponents of yi become noisy [4,16] making accurate forecasting
difficult [25]. The next two subsections outline the approach to
these questions taken in this work.
3.3. Estimate of the embedding dimension via Cao's algorithm

Common technique for selecting the embedding dimension
include the method of False Nearest Neighbours (FNN) [4,17] and
Cao's Algorithm [5]. FNN, which is used in Ref. [16], for example,
involves tracking the number of points in the reconstructed time
series fyig that appear to be nearby only because the embedding
space is too small. The embedding dimension is taken to be the
minimal d so that the number of these “false neighbours” is zero.

In this paper, Cao's Algorithm was used to determine the
embedding dimension. Compared to FNN, it has the advantage of
being less sensitive to the number of points in the time series, and it
does not introduce any subjective parameters [5]. Moreover, it can
differentiate between deterministic (no uncertainty with respect to
time) and stochastic (random signals that cannot be written in
mathematical equation) time series [5].

The method can be described as follows. Given a time series

fxigni¼1, let fydi g
Nðt;dÞ
i¼1 and fydþ1

i gNðt;dþ1Þ
i¼1 be the reconstructed time

series given by equation (3) for the candidate embedding di-
mensions d and dþ 1, respectively. For each 1 � i � N� dt, let
ydnði;dÞ be the nearest neighbor to ydi (that is distinct from ydi ) with

distance measured in the max norm on Rd, and define nði; dþ1Þ
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accordingly. As in Ref. [5], we set

aði; dÞ¼

���ydþ1
i � ydþ1

nði;dÞ
������ydi � ydnði;dÞ
��� (4)

where k , k is the max norm, and consider the average of this
quantity over i:

EðdÞ¼ 1
N � dt

XN�dt

i¼1

aði; dÞ: (5)

Two points that are close in d-dimensional reconstructed phase
space and also close in ðd þ 1Þ-dimensional reconstructed phase
space are called true neighbours [5]. This is measured by means of
the function

E1ðdÞ¼ Eðdþ 1Þ
EðdÞ : (6)

Observe that E1ðdÞwill be constant when d � 2Dþ 1, and hence
it can be used to identify the minimum embedding dimension [5].

A second consideration that is important for applications is
whether the data is stochastic or deterministic. For this, Cao in-
troduces the function

E2ðdÞ¼ E*ðdþ 1Þ
E*ðdÞ (7)

where

E*ðdÞ¼ 1
N � dt

XN�dt

i¼1

��xiþdt � xnði;dÞþdt
��:

If the data are deterministic then E2ðdÞ is dependent on d and so
one will observe that E2ðdÞs1 for some choice of d. On the other
hand, if the data is random, then it must hold that E2ðdÞ ¼ 1 for all
d. Computing both E1ðdÞ and E2ðdÞ allows one to both find a
reasonable embedding dimension and also offers evidence that the
underlying process is indeed deterministic [5].

3.4. Time delay estimation via Average Mutual Information

An appropriate time delay can be determined through the use of
an Autocorrelation Function (ACF) or considering the Auto Mutual
Information (AMI) [4]. This paper uses the latter technique, which
was first introduced by Fraser and Swinney [12]. This method was
used because of its ability to measure the general rather than linear
dependence of two variables [12]. It is also a commonmethodology
used in the construction of the phase space of the attractor [30].

Let A and B be discrete sets. For a random vector ðA;BÞ with
state space A �B and discrete joint probability distribution PAB,
the mutual information of the random variables A and B is defined
by

IAB ¼
X
a2A

X
b2B

PABða; bÞlog2
�

PABða; bÞ
PAðaÞPBðbÞ

�
; (8)

where PA and PB are the marginal probabilities for A and B,
respectively. Intuitively, IAB measures on average how accurately
one can determine B given knowledge of A (or vice versa). The idea
of AMI is to treat Xð4tÞ and Xð4tþtÞ as randomvariables, then adjust
t so as to maximize their mutual information.

With that in mind, suppose fxigni¼1 is a (portion of a) time series
obtained from experimental data. For a candidate time delay t, we
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form the shifted series fxiþtgni¼1 and introduce the sets
A ¼ fxi : i¼ 1;…;ng and B ¼ fxiþt : i ¼ 1;…;ng. Let ðA;BÞ be the
random vector taking values on A �B whose probability distri-
bution PAB is generated by a histogram of fðxi; xiþtÞgni¼1 with an
appropriate bin size. The mutual information of the components A
and B as a function of t is thus

IðtÞ¼
Xn
i;j¼1

PAB
�
xi; xjþt

�
log2

 
PAB
�
xi; xjþt

�
PAðxiÞPB

�
xjþt

�
!
: (9)

We choose the value of t to be the either the first local minimum
of I or when the AMI is monotonically decreasing to the ratio of
IðtÞ
Ið0Þ ¼ 0:2 or 1

e [17].

3.5. Largest Lyapunov Exponent (LLE)

The characterizing feature of chaotic systems is that future
states are effectively unpredictable despite the underlying dy-
namics being deterministic. This phenomenon stems from the flow
map 4t exhibiting sensitive dependence on initial conditions
(SDOIC) [14]. Lyapunov exponents provide one way to quantify this
SDOIC [22] and thereby gauge how chaotic a system is [14]. Tra-
jectories that are initially close but lie on a chaotic attractor will
diverge from one another exponentially fast; the Lyapnuov expo-
nent l gives the average rate of this divergence [13,22]. Note that it
is essential here to take an average since the rate will potentially be
different in different directions [14].

As Lyapunov exponents are insensitive to the choice of metric,
they can be computed through consideration of the Takens’ flow.
For a point m2M and time t, we define the Lyapunov exponents to
be the eigenvalues of the linearized flowmap there; the eigenvalue
with largest real part is called the largest Lyapunov exponent (LLE)
and denoted l. Note that the dynamics of the attractor d should
one exist d is dissipative and as such the sum of the Lyapunov
exponents is negative there. Conversely, in the applied literature, a
positive Lyapunov exponent is often taken as sufficient evidence
that the system is chaotic [3,7,22]. By contrast, if l<0, then there
exists (asymptotically) stable fixed points to which one will find
trajectories converging exponentially. If one has trajectories that
approach or separate from each other slower than an exponential
rate, there must exists a limit cycle that is marginally stable; in this
case, the LLE is equal to zero [14]. Finally, for random noise, the LLE
can be thought of as infinite [14].

Let DðtÞ be the distance between two points in phase space for
the embedded map at time t. Then

SðtÞ¼ ln
DðtÞ
Dð0Þ (10)

provides an approximate upper bound on lt. To determine SðtÞ
from the time series, we construct a Takens vector, say, yN0

and
construct a neighbourhood about this vector of ε distance, BεðyN0

Þ.
For each of the nearby Takens vectors, yi, i ¼ 1;…;N, the average
error between a forward time step, dT , of both a nearby Taken
vector ðxiþdT Þ and the fixed Taken vector, yN0

ðxN0þdT Þ is determined.
The logarithm of all the average distances are taken to give a
measure of the exponential rate of expansion. The average of all N0
values are used to smooth out any noise [14]. From Kantz and
Schreiber [14], SðtÞ is given by

SðtÞ¼ 1
N

XN
N0¼1

ln

0
B@ 1��Bε�yN0

��� X
i¼1;…N:
yi2B

ε

�
yN0
�
��xN0þdT � xiþdT

��
1
CA: (11)
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The largest Lyapunov exponent is estimated by the slope of the
linear region of the curve of SðtÞ against t [13]. After the linear re-
gion, the curve saturates for large t values since the system is
bounded in phase space [22].

This method has been proven by Ref. [22] to work well with
smaller time series as well as time series with white noise super-
imposed with noise-free data. This is especially important, as
shown in Ref. [9], where the length of a series and quality are
factors in the accuracy of the extraction of dynamical information.

If the system is chaotic and l>0, then the series can be pre-
dicted with a prediction horizon given by

t* ¼1
l
ln 1:96 (12)

where t* is the maximum amount of samples with sampling time
that can be predicted with uncertainty; see, for example, [7]. The
uncertainty used is 1:96ε which represents a 95% confidence band.
The confidence bands of 90% and 99% were also evaluated in this
study. The forecasting error exponentially increases with the fore-
casting time at a rate given by the LLE [7]. Thus we see that even
though chaos places a limit on long-term prediction, it affords the
ability of short term prediction [10].
3.6. Forecasting using simple non-linear prediction algorithm

The future state of the system is a function of the present state at
some time say, t. That is, there exists a deterministic forecasting
function [14]. Since there is no certainty of our present state,
inaccuracies grow exponentially over time in chaotic systems.
However, the uncertainties increased over a finite rate, even for
chaotic systems, and as such, short term forecasts can bemade [14].

Consider a scalar time series given by fxigni¼1. Fixing a time delay
t and embedding dimension d, we form the reconstruction vectors

fyigNi¼1 according to (3). To predict some time dt ahead, we consider
BεðyNÞ, the d-dimension ball centered at yN with radius ε. In this
analysis, εwas chosen to be half the smallest possible reading of the
anemometer, 0.05. For all the points yi lying in this ball, we find
their corresponding individual prediction values dt ahead, then
average the result. The prediction is given by

xNþdt ¼
1

jBεðyNÞj
X

i¼1;…N:
yi2B

ε
ðyNÞ

xiþdt ; (13)

which represents the average of these values [14].
Thus we see that the feature of the attractor being a compact

object in phase space, and thus, having neighbours is utilized in the
prediction of the time evolution of new points on or nearby the
attractor [16].
3.7. Errors

In order to test the accuracy of the forecast, the root mean
square error (RMSE) and mean absolute error (MAE) were
computed. These are given by the following equations.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ðpn � xnÞ2


q
; MAE¼hjpn � xnji;

where pn is the predicted observation whilst xn is the actual
observation at the time step n.

The normalized errors were also computed via
1296
E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ðpn � xnÞ2


q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	ðxn � xÞ2
q ¼RMSE

SD
: (14)

Here x ¼ 1
n
Pn

i¼1xi is the mean of the time series. If E ¼ 0 or 0%, then
the prediction is perfect. At the other extreme, if E ¼ 1 or 100%,
then the prediction is no better than the mean [10].
3.8. Analysis of seasonality and the diurnal cycle

The seasonality effects on the forecast were investigated. For
Columbia, Blanchard and Neosho sites the results including the
forecast error, found by subtracting the predicted value from the
actual value, were sliced for every 36th value. This represents every
6th hour of data. Mathematically, this was given by 36nþ 6. For
Columbia the sequence n ¼ 0;1;2;3;…;1237 accounted for its time
series of length 44568. Thus, we had a slice of wind speed values,
say xi whose subscript values i range from i ¼ 6;42;78;…;44538.
For Blanchard, n ¼ 0;1;2;3;…;738 which ran through the series
with 26604 data points. Also Neosho has values
n ¼ 0;1;2;3;…;991 and a series length of 35712.

The diurnal effects of the forecast were also examined in this
study. This was done by further slicing of every 4th 6 h time slice
given above. This is represented as 4mþ 1. It can also be established
by slicing of the original data set, 144mþ 6 where m ¼ 0;1;2;3;…
;309 for Columbia, m ¼ 0;1;2;3;…;184 for Blanchard and
m ¼ 0;1;2;3;…;247 for Neosho. Thus, for Columbia, the indices
considered from the wind speed error were 6, 150, 294, 438, …,
44502 (the last value can be given by 144� 309þ 6). For Blanchard
and Neosho, the subscript sequence is the same with the exception
of the upper limit being 26502 for Blanchard and 35574 for Neosho.

This 144mþ 6 slice of the data was then lagged 6, 12 and 18 h
using the following algorithms 36þ ½144m þ 6�,72þ ½144mþ6�
and 108½144m þ 6�. This was done to investigate the relationship
between the time of day and the errors in the forecast for all height
levels and stations within the forecast run of 2009. For Columbia
station, for the 6 h (36 10-min), 12 h (72 10-min) and 18 h (108 10-
min) shifts, the sequences are given by 42, 186, 330, 474, …,44538
and 78, 222, 366, 510, …, 44430 and 114, 258, 402, 546, …, 44466
respectively. The same sequences were done for Blanchard and
Neosho, however their upper limits were 26538, 26574, 26466 and
35610, 35646, 35682 for 6, 12 and 18 h shifts correspondingly.
4. Results

4.1. Wind speed duration curve (WSDC)

The WSDC is a graphical analysis tool for the persistence of
energy production for a particular station [20]. Figs. 2e4 depict the
WSDC for the various stations, Columbia, Blanchard and Neosho
and their individual tower heights for the year 2009. From the
graphs we observe that there is more of a wind speed variability
among the height levels for Columbia when compared to Neosho.
This is expected as Columbia station's tower spans greater height
levels than Neosho. It is also observed that Blanchard97 experi-
ences a constant low value of wind speed well below 5 ms�1 for
approximately 50% of the time. For the various stations and tall
towers, if theWSDC is flatter, then the wind regime is more regular,
if not it is more irregular. From the results obtained, it can be noted
that the wind regime is more irregular as the heights are increased
for both Columbia and Blanchard with the exception of Blan-
chard97. From Table 1, the percentage of time the wind speeds are
greater than or equal to 4 ms�1, which is typically less than the



Fig. 2. WSDC for Columbia station.

Fig. 3. WSDC for Blanchard station.

Fig. 4. WSDC for Neosho station.
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turbine cut-in wind speed [23], were higher than 70% excluding
Blanchard97. This indicates relatively significant energy persistence
for the stations studied. The energy persistence increased with
height for stations Columbia and Blanchard neglecting the inter-
mediate height level of Blanchard, Blanchard97. This was not the
case for Neosho.

4.2. Reconstruction of phase space

The two parameters, t and d, for the various months and height
levels for the year of 2009 at Columbia are given by Table 2.
1297
However, for illustrative purposes we show the results of August
consistently throughout the paper. This, as well as the other results,
depicts both qualitatively and quantitatively, the chaotic nature of
the series. From Figs. 5e7, we see that at Columbia for the month of
August at height levels 68, 98 and 147m, the first local minima (t)
were observed at 5, 5 and 6 respectively. Similarly, for the corre-
sponding embedding dimensions in August, given by Figs. 8e10 are
9, 9 and 8. It is observed that E1ðdÞ attains saturation at these
values. Also, E2ðdÞ is related to E1ðdÞ and there exist some values of
d for which E2ðdÞs1. This implies that the data are deterministic
rather than random. From the results obtained we note that there
are t and d values that repeat for this station. Such findings are
indicative of required dimensional construction of phase space to
capture the underlying dynamics of the system [30]. Given that the
values for d is for most cases 9, it indicates that the ease of pre-
dictability will be similar for this station for all months as dynamics
of lower dimensions are easier to predict [19].

The phase portraits or diagrams as seen in Figs. 11e13 depict the
non-linear variation of the state of the system with time for
Columbia at three different heights. It gives the attractor's spatial
structure [28]. The axes represent the first three time delayed co-
ordinates used in the construction of the attractor which can be
shown diagrammatically. The number of time delayed, t; co-
ordinates is determined by the embedding dimension, d. Since
the trajectories from the system phase space did not show peri-
odicity nor were they randommotion but rather illustrated a single
attractor, the time series displays chaotic characteristics. These are
deterministically chaotic systems. This is shown in also in a study
by Zend et al. [29] inwhich the phase diagram of near surfacewinds
were not closed curves indicative of aperiodic trajectories. In
another study done by Yu et al. [28], the trajectories of the attractor
were not as well-defined as that of Lorenz's because the interfer-
ence of noise signals from the environment. For all of the months in
2009 and height levels of the tall tower in Columbia, we observed
the chaotic characteristics of the wind speed from the phase
portraits.



Table 1
Wind Speed Values greater than or equal to 4 ms�1 from WSDC.

yðm =sÞ Station xð%Þ
4 Columbia68 73.4

Columbia98 79.9
Columbia147 82.7

4 Blanchard61 77.1
Blanchard97 39.5
Blanchard137 82.5

4 Neosho50 77.2
Neosho70 77.1
Neosho90 72.5

Table 2
Values of the Parameters, time delays and embedding dimensions for Columbia
station.

Month
t d Month t d Month t d

Jan C68 10 8 Feb C68 6 8 Mar C68 5 9
Jan C98 4 11 Feb C98 6 9 Mar C98 5 9
Jan C147 1 9 Feb C147 6 8 Mar C147 6 9
Apr C68 5 9 May C68 5 9 June C68 4 9
Apr C98 5 9 May C98 5 9 June C98 5 9
Apr C147 5 9 May C147 6 9 June C147 5 8
July C68 4 9 Aug C68 5 9 Sept C68 7 8
July C98 4 9 Aug C98 5 9 Sept C98 7 8
July C147 5 9 Aug C147 6 8 Sept C147 8 7
Oct C68 5 9 Nov C68 5 9 Dec C68 6 9
Oct C98 6 9 Nov C98 5 9 Dec C98 6 8
Oct C147 7 9 Nov C147 6 8 Dec C147 7 8

Fig. 5. Time delay given by the method of AMI, Mutual Information against Time Lag
for Aug Columbia68.

Fig. 6. Time delay given by the method of AMI, Mutual Information against Time Lag
for Aug Columbia98.

Fig. 7. Time delay given by the method of AMI, Mutual Information against Time Lag
for Aug Columbia147.
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Fig. 8. Embedding dimension given by Cao's Algorithm, E1ðdÞ and E2ðdÞ against d for
Aug Columbia68.

Fig. 10. Embedding dimension given by Cao's Algorithm, E1ðdÞ and E2ðdÞ against d for
Aug Columbia147.
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4.3. Largest Lyapunov Exponent (LLE)

The wind speed at all heights of the tall tower display chaotic
characteristics as the LLE were positive [14]. This implies that the
Fig. 9. Embedding dimension given by Cao's Algorithm, E1ðdÞ and E2ðdÞ against d for
Aug Columbia98.
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trajectories diverge exponentially fast and there is an increase in
the average exponent of the trajectory divergence characteristic of
a non-periodic system as also seen in the phase diagrams of this
study. From the graphs in Figs. 14e16, it can be noted that even
though it is not prominent, there is a linear region before the curve
saturates regardless of the embedding dimensions. It is also seen in
a study done by Yu et al. [28] that wind speeds display positive
chaotic characteristics. In this study however, the increasing level of
chaos characteristics did not coincide with the increasing height
levels of the tall tower. This is noted quantitatively from Table 3.
Fig. 11. Phase space reconstruction for Aug Columbia68 showing the first three time
delayed co-ordinates.



Fig. 12. Phase space reconstruction for Aug Columbia98 showing the first three time
delayed co-ordinates.

Fig. 13. Phase space reconstruction for Aug Columbia147 showing the first three time
delayed co-ordinates.

Fig. 14. Lyapunov Exponents for Aug Columbia68, SðtÞ against t.

Fig. 15. Lyapunov Exponents for Aug Columbia98, SðtÞ against t.
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The average LLE of the various tall tower heights for the 2009
were 0.1133, 0.11305 and 0.11259 for Columbia68, Columbia98 and
Columbia147 respectively. From equation (12), we obtain the pre-
diction horizon to be approximately 6 times steps or one hour for
all height levels. However, changing the confidence band to 90%
and 99%, decreased and increased the prediction horizon to
approximately 4 and 8 time steps respectively. Thus, we note an
incremental increase in the prediction horizon by 2 time steps
when the confidence bands increased from 90 to 95 and to 99%. We
expect this increase as increasing the confidence causes an increase
in the margin of error thus resulting in a larger interval. If we
consider theminimumof all the LLE of each of the increasing height
levels, we get the corresponding values of 0.07613, 0.06329 and
0.06452. The prediction horizon, using the 95% confidence band, is
1300
increased to approximately 9, 11 and 10 time steps or 1.5, 1.8 and
1.6 h respectively. Similarly using these minimum LLE, it was
determined that for the two largest height levels of this station, for
a confidence band of 99%, the prediction horizon increased to an
estimated 2.5 h. Whilst using the lowest confidence band of 90%,
the said value was decreased to approximately 1.3 h. For the lowest
height level, confidence bands of 90 and 99% implied roughly 1.2
and 2 h for the prediction horizon respectively.



Fig. 16. Lyapunov Exponents for Aug Columbia147, SðtÞ against t.

Table 3
Values of the Parameter, Lyapunov Exponent, for Columbia station.

Month
LLE Month LLE Month LLE

Jan C68 0.21850120 Feb C68 0.11124360 Mar C68 0.12129040
Jan C98 0.23026360 Feb C98 0.06329283 Mar C98 0.10560540
Jan C147 0.28907590 Feb C147 0.09144223 Mar C147 0.08357779
Apr C68 0.11611450 May C68 0.10797860 June C68 0.09807250
Apr C98 0.09545526 May C98 0.07794641 June C98 0.09980393
Apr C147 0.09965277 May C147 0.06451961 June C147 0.11250640
July C68 0.14193490 Aug C68 0.09708272 Sept C68 0.08012870
July C98 0.13593250 Aug C98 0.09956517 Sept C98 0.13722600
July C147 0.06720401 Aug C147 0.12664330 Sept C147 0.10288420
Oct C68 0.11155650 Nov C68 0.07613265 Dec C68 0.07952253
Oct C98 0.10451390 Nov C98 0.07777989 Dec C98 0.12927020
Oct C147 0.10715060 Nov C147 0.11311340 Dec C147 0.09325161

Fig. 17. Errors and correlations for Columbia68, RMSE (ms�1), MAE (ms�1) and cor-
relations against time step for EDM and persistence.
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4.4. Forecasting using non-linear algorithm

For this forecasting analysis, all the height levels of each station
were employed. The attractor was constructed using the first 56
days of the year having determined the embedding dimension and
the time delay using that data as the training of the model. Using
the forecasting algorithm described in section 3.4, the next 6 h or
36 time steps (in 10min intervals) were predicted. The preceding
forecast was done for the next consecutive 6 h but it was done using
a moving window in which the attractor was reconstructed for this
run. The training data were assigned to be 56 days starting from a
six hour delay of the previous run. This process was iterated until
the entire series in this moving window is accounted for. The
forecasted data for each run and the actual datawere compared and
its RMSE, MAE and Correlations were calculated. These errors were
determined cumulatively for all of the first predictions or time step
through the last prediction or 36th time step.

From the results given in Figs.17e19 for all of the height levels in
Columbia, it is evident that both the RMSE and theMAE increases as
the forecasting time step is increased as expected. It should be
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noted that the correlation between the actual and the predicted
wind speed values is greatest (almost 1) at the first time step and it
decreases to under 0.5 for the last time step. It is observed that the
RMSE plateaus to approximately 2.5 ms�1, 3.0 ms�1 and 3.5 ms�1

for Columbia68, Columbia98 and Columbia147 respectively. The
errors are expected to increase as the height level increases because
the wind speeds are increasing with height.

Similar analyses were done in Figs. 20 and 21. However, no re-
sults are provided for Blanchard97 because of its inoperability for
approximately 50% of the time. The max RMSE for Blanchard61 and
Blanchard137 were greater than Columbia; their values for the 36th
forecasts were approximately 3.5 and 4.5 ms�1. For the Neosho tall
tower, as depicted in Fig. 21, the RMSEs for the last prediction step
were 3.17, 2.96 and 2.87 ms�1 for Neosho50, Neosho70 and Neo-
sho90 respectively. This is approximately 3.0 ms�1 for all heights.
This as well as the similar numerical trends from the other time
steps, indicate that of all the stations, there is least variability be-
tween the actual and predicted values for this station. This co-
incides with Fig. 4, where Neosho had the least wind speed
variability among all the height levels.

Figs. 22e24 show the normalized errors for the various stations.
All of the stations and at all heights follow the same increasing
trend, which begins to plateau. From the results of Columbia, for all
of the heights, after the 20th time step or after 3.33 h of forecasting,
the model normalized errors exceed 1 or 100%. As such the forecast
is no better than the mean of the data after this run. However using
a range of normalized errors, we note that for normalized errors
exceeding 50 and 75% occurred after the 1st, 2nd, 3rd and the 7th,
7th, 9th time steps for Columbia68, Columbia98 and Columbia147
respectively. From the Lyapunov analysis, the prediction horizon
was determined to be 4, 6 and 8 time steps for the various confi-
dence bands, which all gave normalized errors of less than 65, 75
and 80% correspondingly. Similarly, for Blanchard61 and Blan-
chard137, the normalized error was below this 100% normalized
error threshold at the 22nd and 19th time step respectively. The 8th
and 2nd time steps corresponded to normalized errors of under 75
and 50% respectively. Also for Neosho, this model is not better than
the average projection after the 23rd, 24th and 27th 10-min fore-
cast for Neosho50, Neosho70 and Neosho90 correspondingly.
However the normalized errors of under 50 and 75%, for these



Fig. 18. Errors and correlations for Columbia98, RMSE (ms�1), MAE (ms�1) and cor-
relations against time step for EDM and persistence.

Fig. 19. Errors and correlations for Columbia147, RMSE (ms�1), MAE (ms�1) and cor-
relations against time step for EDM and persistence.
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respective height levels, occurred at most for the time steps of 2
and 9.

This model was also compared to the benchmark model of
persistence. Wind speed persistence for a given site, as defined in
[18],is a measure in which the duration of the average wind speed
persists. The average for every multiple of the 6th hour was
recorded as the value of persistence for the next consecutive 6 h or
36 time steps. This was done for the entire series of 2009 for all
height levels for each station. The results are shown also in
Figs. 17e21. It was determined that for Columbia and Blanchard at
all height levels, our model out performed persistence for the first
time step however for Neosho, persistence beat our model at all
heights of the tall tower. This is expected as Nesoho, of the three
stations, had the least annual mean friction velocity of 0.597 [11].
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Our model, as expected, does better in more turbulent flow with
greater roughness. It should be noted though, that the difference in
the average RMSE for the EDM and the persistence model at all
height levels of Columbia and Neosho did not exceed 0.5ms�1. This
value was approximately 0.6ms�1 for Blanchard. This, thus dem-
onstrates that the EDM is comparable to persistence. The model
displays relatively good accuracy as for this short-term range,
persistence, autoregressive, moving average, autoregressive mov-
ing average and autoregressive integrated moving average models
all perform better than the NWP models [8]. However, the model
displays better accuracy within the very short-term scale, between
a fewminutes to one hour. This is expected as persistence does well
in the short term range. Another reason is due to the chaotic sys-
tem's SDOIC [19]. The shorter term forecasts will be more accurate
for these deterministic non-linear systems. The degree of accuracy
was also determined by the amount of noise in the data. Since it is
generally given that high wind speed implies high persistence [18],
it would be expected that the model would not beat persistence for
more time steps with increasing heights, and this is seen. We also
got the expected result of the average difference between the two
models for the 36 time steps to increase with increasing tower
height. We obtained this result for two of three stations, Columbia
and Blanchard. This small range in forecast where persistence can
be beaten is also captured from the prediction horizon given by the
LLE. From the results obtained, this is closest in agreement with the
prediction horizon using the 90% confidence band and using a
normalized error cap of 50%.

For this very short term forecast interval, there are not many
research papers available [24]. However, another model used in a
case study in Tasmania, Australia beat persistence in this scale,
2.5min ahead. This is a hybrid model, Adaptive Neuro-Fuzzy
Interface System (ANFIS) [24]. This very short term scale is uti-
lized for efficient trading and optimal use of transmission lines [21].
There is no widespread acceptance in the industry for a particular
very short-term forecasting system as there is no reliable fore-
casting technique for this scale where wind speeds have the most
variations. Persistence is often deemed sufficient for this time scale
as historically predicting for this scale was viewed as unnecessary
[21].

4.5. Analysis of seasonality and the diurnal cycle

From Table 4, it is clear that for the slices and shifts of the data,
all stations and height levels had a mean error of approximately
0 ms�1. This is due to a roughly even distribution of negative and
positive errors. They deviated from their respectivemeans, formost
cases, by an estimated value of 2 ms�1. The exception was Blan-
chard137 after the first 6 h shift from 144mþ 6 slicing of the data,
its deviation from the mean of approximately 0 ms�1 was an esti-
mated wind speed value of 3 ms�1.

The seasonality analysis was done for all three stations with
particular concentration on Columbia as this station had all of the
monthly data for 2009. In the Northern Hemisphere for the year of
2009, spring began on Friday 20thMarch. Summer started Saturday
June 20th while for fall and winter they commenced on September
22nd and December 21st respectively. Spring corresponded to the
7272nd window. This coincided with a numeric value of forecast
3276. The start of summer 2009 corresponded with window 20520
which is numeric value 16524 whilst for fall and winter the win-
dows values were 34056 and 47016 which coincided with numer-
ical values of forecast 30060 and 43020 respectively.

Figs. 25e27 show the various errors for the four seasons in the
forecast period in 2009 for Columbia68, Columbia98 and
Columbia147 respectively. The seasons of spring, summer and fall
will be of focus as winter of 2009 was represented as a few days in



Fig. 20. Errors and correlations for Blanchard tall tower, RMSE (ms�1), MAE (ms�1) and correlations against time step for EDM and persistence.

Fig. 21. Errors and correlations for Neosho tall tower, RMSE (ms�1), MAE (ms�1) and correlations against time step for EDM and persistence.

Fig. 22. Normalized Errors for height levels of Columbia Tall Tower, Normalized Errors
(%) against Time Step.

Fig. 23. Normalized Errors for height levels of Blanchard Tall Tower, Normalized Errors
(%) against Time Step.
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this analysis as data of 2010 were not included in this study. Also,
since the data spanned one year, the seasonality aspect of the
model could not be fully investigated. The average errors and
standard deviations of these seasons were, however, determined
and compared to that of the entire model run for 2009. It was given
that for Columbia68, summer had the lowest magnitude of errors
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between model run and actual values; its value was �0.03809 with
standard deviation of 1.511631. This is the only season whose
average error was under the average error for the entire model run
for 2009. Fall average errors were a bit higher than for the summer;
their values were 0.064728 and 1.770366 respectively. Spring has
the largest average errors and standard deviations; its values



Fig. 24. Normalized Errors for height levels of Neosho Tall Tower, Normalized Errors
(%) against Time Step.

Fig. 25. Seasonality Analysis for Columbia68, Error (ms�1) against Time Step every
36nþ 6.
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were �0.19993 and 1.954639. This is expected as from the average
wind speeds for the various months, shown in Ref. [1], summer had
the least average wind speeds as well as incurred the least monthly
variations. For Columbia98, once again summer had the least
average errors in the simulation. The mean error was approxi-
mately the same as Columbia68 with the standard deviation
increasing by an estimated 0.21. Fall, for this height level, had the
Table 4
Means, Standard Deviations, Min Values and Max Values of errors, in ms�1, for various a

Analyses
Station Mean

36nþ6 Columbia68 �0.04976043
Columbia98 0.09388809
Columbia147 0.08977431

144m þ 6 Columbia68 �0.191192
Columbia98 0.2311889
Columbia147 0.1320323

36 þ 144m þ 6 Columbia68 0.07817742
Columbia98 0.06601613
Columbia147 �0.04369969

72 þ 144m þ 6 Columbia68 �0.1004072
Columbia98 0.08013061
Columbia147 0.1764266

108 þ 144m þ 6 Columbia68 0.01442377
Columbia98 �0.002137463
Columbia147 0.09463323

36nþ6 Blanchard61 �0.1574112
Blanchard137 �0.07311908

144m þ 6 Blanchard61 �0.1845045
Blanchard137 0.004801802

36 þ 144m þ 6 Blanchard61 �0.1805598
Blanchard137 0.02518018

72 þ 144m þ 6 Blanchard61 �0.2122522
Blanchard137 �0.5742613

108 þ 144m þ 6 Blanchard61 �0.05175725
Blanchard137 0.2535688

36nþ6 Neosho50 �0.007078053
Neosho70 0.006690188
Neosho90 �0.02743856

144m þ 6 Neosho50 0.2418952
Neosho70 0.01000672
Neosho90 �0.1898185

36 þ 144m þ 6 Neosho50 �0.03209293
Neosho70 0.1394792
Neosho90 �0.07311972

72 þ 144m þ 6 Neosho50 �0.2335916
Neosho70 �0.229328
Neoaho90 �0.0705506

108 þ 144m þ 6 Neosho50 �0.004522849
Neosho70 0.1066028
Neosho90 0.2237346
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highest error value of approximately 0.10 while spring had the
lower value of 0.06. The standard deviation of the errors in the
model, for spring were higher than for fall with an estimated value
of 2.17 opposed to 1.82. Both summer and spring have lower
average errors than the year model run, which from Table 4 is
around 0.09. For the largest of the three height levels, Columbia147,
all seasons considered were under the entire 2009 model run.
Spring and summer both had the same average error of 0.05 while
fall had a slightly smaller mean error value of 0.04. The standard
nalyses.

Standard Deviation Min Value Max Value

1.791448 �8.6 9.6
1.914046 �8.6 15
2.064804 �9.4 10
1.679333 �5.05 6
1.670056 �5.4 6.9
2.066888 �8 6.7
1.819659 �5.9 9.6
2.088458 �6.1 15
1.976215 �5.6 8.25
1.800744 �7.9 5.3
1.946351 �6.9 7.4
2.11462 �9.4 10
1.857963 6.2 �8.6
1.929332 7.8 �8.6
2.102374 9.7 �7.8
2.063242 �6.6 10.9
2.480952 �9.6 8.8
2.071191 �6.6 4.8
2.261244 �9.6 6.3
2.129216 �5.1 10.9
2.847701 �8.6 8.8
1.995355 �5 8.1
2.379635 �9.05 7.1
2.068112 6.6 �6.6
2.335961 7.4 �6.05
2.050773 �9.8 12.5
1.937222 �7.8 10.5
1.831548 �7.7 8.5
2.111877 �7.1 8.1
2.003076 �7.8 7.7
1.839123 �7.1 5.6
2.105925 �9.8 5.3
1.853771 �7.2 8.8
1.724716 �7.7 5.25
1.950025 �6.65 7.2
1.865122 �6 6.9
1.879079 �5.9 6.3
2.015396 �6.7 12.5
2.01141 �4.8 10.5
1.864748 �5.23 8.5



Fig. 26. Seasonality Analysis for Columbia98, Error (ms�1) against Time Step every
36nþ 6.

Fig. 27. Seasonality Analysis for Columbia147, Error (ms�1) against Time Step every
36nþ 6.

Fig. 28. Diurnal Analysis for Columbia68, Error (ms�1) against Time Step every
ð144m þ 6Þ.
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deviation values were largest for spring (2.162856) and smallest for
summer (1.896873). Thus, it was observed that for the station at
Columbia, with the exception of the last height level in which all
height levels incurred the same average deviations from the actual
wind speed values, the summer seasonwas the most accurate from
this model. Also, for all heights on the tall tower, the standard de-
viations were largest for spring and smallest for summer.

For Blanchard61 and Blanchard137, all of the spring season was
in the model run; however, for summer, 98 of the 376 readings of
the slices representative of fall 2009 weremissing. Similar statistics
were calculated and it was observed that for the lowest height level
therewas larger average error and a lower standard deviation value
for summer than spring, a magnitude difference of 0.2276 and
0.21228 respectively. For Blanchard137, summer had lower average
errors and deviations when compared to spring. Considering sta-
tion Nesoho at height level 50m, once again, summer incurred the
least average error of 0.017019 with standard deviation 1.936593
when compared to the other two seasons of spring and fall whose
magnitude of average error were estimated 0.03 and 0.05 respec-
tively. However, it must be noted that the fall season has 205 data
slices missing from the 360 slices representative of fall 2009. For
Neosho70, spring, however, had the least magnitude in its average
error whose value is 0.00351 whilst the fall had the least standard
deviation of 1.559813. For the final height level of Neosho, it was
determined that the modulus of the average error for all the sea-
sons considered were less than that value for the model run. This
value as well as the standard deviation were the smallest for the
summer season. Thus, four of the eight stations’ height levels had
the season of summer incurring the lowest magnitude of average
errors and standard deviations. This is expected as the weakest
winds occur during this season whilst the strongest winds are
observed fromOctober through spring. This is due to the passage of
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cyclones during these cooler periods. There is also during the
summer, more heating which causes more instability and turbu-
lence with less wind shear and near surface winds. The increased
vegetation cover during this season are responsible as well for the
increased turbulence due to its surface roughness and lower albedo
and thus deeper boundary layer (BL) [11].

The diurnal analysis methodology, explained in Section 3.6, was
investigated. The model took 56 days to initialize and it began to
forecast on February 26th for all stations and height levels. The
144mþ 6 slicing of the forecast represents the extraction of the
data every day at 6:50 a.m. The subsequent extracting of the data 6,
12 and 18 h later represented times of 12:50 p.m., 6:50 p.m. and
12:50 a.m. respectively. The results obtained for this slicing for the
station of Columbia at height level 68m are shown in Figs. 28e31.
Statistical parameters for the entire forecast period for all slices and
stations can also be viewed in Table 4.

Two cases occurred where the hours of 6:50 a.m. and 12:50 p.m.
had the highest standard deviation values when compared to the
early morning and evening hours of 12:50 a.m. and 6:50 p.m. This
occurred for the lowest heights of Neosho and Blanchard. While for
the highest levels of Columbia and Neosho we see the reverse
occurrence where 6:50 p.m. had the highest standard deviation
followed by 12:50 a.m., 6:50 a.m. and 12:50 p.m. This might be as a
result of the nocturnal low level jet and strong overnight wind,
which is common in the Midwest. This is due to the reduced con-
vection and turbulence during the cool night hours which causes
more stability with larger wind shear as a result of the reduced
transfer of energy and momentum between the layers. The
boundary layer is shallower and as such the geostrophic winds are
closer to the surface [11]. However, there is no evident trend where
a particular time of the day the model incurred more errors and
greater standard deviations for all stations and heights. This may
imply that the lack of sensitivity to the diurnal cycle by the stations
height levels means that the model handles any transitions well.
5. Conclusions

Chaotic characteristics were established for wind speeds within
Missouri for various height levels using both a qualitative method,
phase space reconstruction, and a quantitative method, determi-
nation of the Lyapunov Exponent. Having established that the time
series were chaotic in nature, a non-linear prediction algorithmwas
applied. Empirical Dynamical Modeling employed the dynamics of
the time series instead of a set of governing equations. It was
determined that this non-linear statistical method, which utilizes
phase space reconstruction is relatively accurate as it is comparable
to persistence. It however, beats this benchmark model for a pre-
diction horizon of 1 time steps (10min). It thus works best in the



Fig. 29. Diurnal Analysis for Columbia68, Error (ms�1) against Time Step every
½ð144m þ 6Þ þ 36�.

Fig. 30. Diurnal Analysis for Columbia68, Error (ms�1) against Time Step every
½ð144m þ 6Þ þ 72�.

Fig. 31. Diurnal Analysis for Columbia68, Error (ms�1) against Time Step every
½ð144m þ 6Þ þ 108�.
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very short term as expected and predicted by prediction horizon
given by the LLE. The normalized errors using a 50% cap also
corroborate this time scale. This prediction model showed, as ex-
pected, the errors are increasing as the prediction time step in-
creases; the errors eventually plateau. Seasonality and diurnal
effects of the model were also investigated. It was shown that for
the summer, four of the eight height levels had the lowest
magnitude of average errors and standard deviations. This is ex-
pected, as there is less synoptic forcing in Missouri for the summer.
It was also determined that themodel handles the transitions of the
diurnal cycle well as there is no time of day considered for which
the model incurred more errors and had greater standard de-
viations for all stations and height levels.

The limitations of this study are due to the chaotic system
suitability context that the data should be noise free and
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deterministic to fully capture the dynamics of multi-dimensional
system by one observation. Thus forecasting using this method is
not a simple task due to the non-linearity of the dynamical system
and because the noise hides this dynamic [19].

It will be interesting to test this model with exogenous variables.
Future work entails comparing the results obtained from this
model with the findings from Artificial Intelligence (AI) methods
such as Artificial Neural Network (ANN).
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