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Abstract: The El Niño-Southern Oscillation (ENSO) is a dominant source of global climate variability.
The effects of this phenomenon alter the flow of heat from tropical to polar latitudes, resulting in
weather and climate anomalies that are difficult to forecast. The current work quantified two
components of the vertically integrated equation for the total energy content of an atmospheric
column, to show the anomalous horizontal redistribution of surface heat flux anomalies. Symmetric
and asymmetric components of the vertically integrated latent and sensible heat flux divergence
were quantified using ERA-Interim atmospheric reanalysis output on 30 model layers between
1979 and 2016. Results indicate that asymmetry is a fundamental component of ENSO-induced
weather and climate anomalies at the global scale, challenging the common assumption that each
phase of ENSO is equal and opposite. In particular, a substantial asymmetric component was
identified in the relationship between ENSO and patterns of extratropical climate variability that
may be proportional to differences in sea surface temperature anomalies during each phase of ENSO.
This work advances our understanding of the global distributions of source and sink regions, which
may improve future predictions of ENSO-induced precipitation and surface temperature anomalies.
Future studies should apply these methods to advance understanding and to validate predictions of
ENSO-induced weather and climate anomalies.

Keywords: El Niño-Southern Oscillation; ENSO symmetry; climate variability; sensible heat
flux; latent heat flux; heat flux divergence; teleconnections; Pacific North American pattern;
North Atlantic Oscillation

1. Introduction

Coupled atmosphere–hydrosphere interactions have gained attention in recent decades, given
the recognition of the El Niño-Southern Oscillation (ENSO) as a dominant source of inter-annual
climate variability [1]. ENSO impacts ecosystem productivity (e.g., agriculture), natural resource
management (e.g., freshwater), and atmospheric convection (e.g., hurricanes and thunderstorm
frequency and intensity) globally [2]. El Niño and La Niña events are described through the
analysis of sea surface temperature (SST) anomalies within the Niño 3.4 region (170◦ W to 120◦

W, 5◦ S to 5◦ N [3]). El Niño represents the warm phase, whereas La Niña represents the cool
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phase of the ENSO phenomena, and both phases typically reach peak magnitude during the month of
December when the SST anomaly variance is maximized in the Niño 3.4 region [4]. The Southern
Oscillation is quantified as the difference in mean sea level pressure (MSLP) between Tahiti and Darwin,
Australia [5]. Longitudinal gradients in MSLP associated with the Southern Oscillation influence the
magnitude, and in some cases, the direction (i.e., westerly wind bursts [6]) of the equatorial easterly
trade winds [7]. The combination of anomalous SSTs (i.e., El Niño or La Niña) and wind patterns
(i.e., Southern Oscillation) force anomalous heat fluxes at the ocean-atmosphere interface, altering the
flow of heat from tropical to polar latitudes [1,8].

Studies have repeatedly and conclusively shown that anomalous surface fluxes of sensible and
latent heat associated with SST anomalies in the Niño 3.4 region are mechanistically responsible for a
cascade of global climate impacts that are only partially understood [1,9,10]. The tropical atmosphere is
characterized by two overturning circulations, the meridional Hadley circulation and the zonal Walker
circulation, which are coupled with cloud and precipitation patterns [11]. For example, convection
shifts toward the maximum positive SST anomaly in the equatorial Pacific Ocean reducing outgoing
longwave radiation and shifting the ascending branch of the Walker circulation, thereby amplifying
Rossby wave generation [1,12]. The meridional propagation of Rossby waves influences the position
and strength of subtropical and mid-latitude jet streams (i.e., Hadley circulation), and the probability
density functions of recurring patterns of low-frequency climate variability (i.e., teleconnections; [13,14]).
Given these cascading effects, anomalous surface heat fluxes associated with ENSO induce a
multitude of detrimental weather and climate anomalies that extend into extratropical latitudes and
remain confounding to researchers [1].

Teleconnection patterns including, but not limited to, the Pacific North American (PNA) pattern
and North Atlantic Oscillation (NAO) are influenced by ENSO, and force extratropical patterns of
anomalous precipitation and surface temperatures [1,14]. The PNA pattern is a mode of climate
variability that is distinct from ENSO, but El Niño events increase the probability of a positive
PNA pattern and vice versa for La Niña events [15]. Most winters cannot be characterized
solely by a canonical NAO structure, due to the substantial intra-seasonal variability that is
induced by multiple forcing mechanisms [16], indicating that ENSO’s influence on the NAO is more
nuanced and not well-understood [17]. Additionally, a diverse continuum of ENSO events exists,
with variable extratropical weather and climate impacts that limit the predictability due to stochastic
atmospheric noise and a variety of feedback mechanisms [14,18]. Ultimately, variability in anomalous
surface heat fluxes unpredictably impacts regional to global patterns of precipitation and surface
temperature [14,18].

Composite analyses of observed temperature and precipitation patterns that are associated with
ENSO have been documented [19,20], but surface observation stations are irregularly located over
continents, and with the exception of data buoys [21], are absent over the oceans [1]. A limited surface
observation network has motivated the use of combined satellite observations, rain gauge records, and
reanalysis output to estimate global precipitation anomalies associated with ENSO [22]. Subsequent
analyses of ENSO-induced weather and climate anomalies have typically been performed at regional
scales [23–25], and many of the regional scale studies have focused on the Northern Hemisphere
(NH; [26]). Fewer studies, however, have attempted to quantify the influence of ENSO on the
Southern Hemisphere’s (SH’s) extratropical circulation, due to the lack of meteorological and
oceanographic data [27] and an apparently weaker and more variable atmospheric response [1].
However, well-regarded and widely used atmospheric reanalysis data sets (e.g., ERA-Interim; [28])
provide an opportunity to refine existing global scale analyses of weather and climate anomalies
forced by ENSO. Novel applications of global atmospheric reanalysis products (e.g., the horizontal
redistribution of anomalous surface heat fluxes) can be used to better understand the spatial
distribution of ENSO-induced weather and climate anomalies, particularly in locations with limited
surface observation networks.
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Atmospheric reanalysis involves processing large quantities of historic observations using
advanced data assimilation methods (e.g., 4D-Var [28]) to provide physically consistent analyses of
a suite of atmospheric quantities on many vertical layers. However, atmospheric reanalysis output
is typically used for regression or composite analyses of seasonal MSLP or geopotential height
anomalies on standard isobaric surfaces (i.e., 500 or 700 hPa [14,29,30]) suggesting that the vertical
resolution of atmospheric reanalysis output has been underused. Similar analyses have been
used to assess the validity of the common assumption that weather and climate anomalies during each
phase of ENSO are symmetric (i.e., equal and opposite [29]). Theoretically, well-known asymmetries in
the magnitude and duration of SST anomalies during El Niño and La Niña events [4,31] would
proportionally influence surface heat fluxes [8], but the magnitude and spatial distribution of
asymmetric weather and climate anomalies remains controversial [14,26]. For example, [29] identified
substantial asymmetries at low relative to mid or high latitudes, but [28] concluded that asymmetry is a
fundamental feature of recent ENSO events across North America. Given the evidence in the literature,
it is clear that analyses commonly used to assess ENSO’s extratropical influence are underusing the
high vertical resolution of contemporary atmospheric reanalysis output. The consequences of this
may be hindering advancements to scientific understanding of ENSO-induced weather and climate
anomalies, and their symmetry.

Asymmetries in the magnitude and duration of SST anomalies associated with El Niño and
La Niña events have been well-documented [4], but the magnitude and spatial distribution of
asymmetric weather and climate anomalies remains controversial [14]. One explanation for the
controversy is that studies addressing extratropical weather and climate anomalies typically use a
limited subset of atmospheric reanalysis datasets, including anomalous patterns of geopotential height,
surface temperature, and/or precipitation [29,32–34]. However, reanalysis output on original model
levels is more accurate than interpolating the output onto geopotential surfaces [35], and reanalysis of
the output of surface temperature and precipitation is subject to bias from changes in the observation
density [36,37]. Furthermore, the combination of irregularly spaced surface observations over land [1],
complex sub-grid scale processes [38], sharp precipitation gradients in time and space [39], and the
lack of surface observations over oceans, limits the global scale accuracy of reanalyzed fields of surface
temperature and precipitation. Collectively, direct assessment of ENSO-induced weather and climate
anomalies using reanalyzed fields of surface temperature and precipitation anomalies has become
repetitive, and complexities inherent to these fields may be hindering advancements to scientific
understanding, and thus the predictability of ENSO.

Surface fluxes of latent and sensible heat flux are a core component of ENSO-induced climatic
variability [40], but the horizontal redistribution of anomalous heat fluxes has received relatively little
attention. In terms of the landscape and land surface processes, previous literature has indicated
that vertically integrated latent heat flux divergence provides a better estimate of streamflow than
reanalyzed fields of precipitation [41] and a similar relationship exists between the sensible heat
flux divergence and surface temperature [42,43]. Quantifying the divergence of vertically integrated
fluxes of sensible and latent heat provides an estimate of source and sink regions of sensible and latent
heat corresponding to anomalous surface temperature and precipitation patterns, respectively.

The overarching objective of the current work was to quantify the global distribution of anomalous
latent and sensible heat flux divergence averaged over the meteorological winter (i.e., December,
January, and February) during all El Niño and La Niña events between 1979 and 2016. A sub-objective
was to quantify the symmetric and asymmetric components of ENSO-induced latent and sensible
heat flux divergence anomalies, to advance the understanding of ENSO dynamics and increase the
predictability of future ENSO-induced precipitation and surface temperature anomalies.

2. Experiments

The following investigation was global in extent, with data analyses being restricted to the
ERA-Interim atmospheric reanalysis output. ERA-Interim is a well-regarded reanalysis product that
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has a large and diverse user base associated with a variety of data products [27]. To accomplish the
objectives of this work, novel analytical methods typical of the vertically integrated energy budget
were applied to the problem of extratropical weather and climate anomalies associated with ENSO
forcing. In particular, the divergences of vertically integrated horizontal fluxes of latent and sensible
heat were quantified. This approach is justified because surface heat fluxes are a core component of
ENSO-induced climatic variability [40], but their horizontal redistribution has not received adequate
attention. Traditional methods (i.e., MSLP or geopotential height anomalies), while informative, would
have been repetitive relative to other previous works [32–34] and were also beyond the scope of the
current work.

2.1. ENSO Events

El Niño or La Niña events are often defined by at least five consecutive tri-monthly moving
averages of SST anomalies within the Niño 3.4 region that are above and below 0.5 ◦C and −0.5 ◦C,
respectively, and are more commonly referred to as the Oceanic Niño Index (ONI; [44]). Other ENSO
metrics exist including the Southern Oscillation Index (SOI; [45]) and the multivariate ENSO index
(MEI; [46,47]), but ONI was preferred for this work due to the direct relationship between surface
heat fluxes and SST anomalies [8]. For historical purposes, the occurrence of all ENSO events since
1950 has been documented by the Climate Prediction Center (CPC; [48]) using data from the most
up-to-date version of the Extended Reconstructed Sea Surface Temperature project (ERSSTv5; [49]).
However, due to temporal limits of the ERA-Interim Reanalysis (1979 to present; [27]), only the ENSO
events occurring between 1979 and 2016 were considered for this work, resulting in a total of 25 ENSO
events, 12 La Niña events and 13 El Niño events (Table 1). Maximum ONI values were recorded during
the November, December, January (NDJ) period for nine of the 13 El Nino events and eight of the
60 La Nina events (not shown) consistent with a December peak in monthly SST anomaly variance [4].
Given that extratropical weather and climate anomalies lag behind SST anomalies by approximately
one month [50], analyses in this work were focused on the boreal winter, defined here as December
through February (DJF). ONI values for the DJF period of each ENSO event is shown in Table 1, and the
average of all El Niño events was 1.3 ◦C and the average of all La Niña events was −1.1 ◦C, consistent
with inherent asymmetries in SST anomalies [4]. Selecting the DJF period was a reasonable approach,
given that composite analyses during the DJF period is a common approach for assessing extratropical
weather and climate anomalies forced by ENSO [14,51,52]. The timing of the peak magnitude and the
duration of individual ENSO events is variable, but examining event-to-event differences was beyond
the scope of the current work.

Table 1. Summary of 13 El Niño events and 12 La Niña events occurring between 1979 and 2016,
including the Oceanic Niño Index (ONI) values recorded during December, January, February (DJF)
per event, where, ONI = Oceanic Niño Index.

El Niño DJF ONI La Niña DJF ONI

1979–1980 0.6 ◦C 1983–1984 −0.6 ◦C
1982–1983 2.2 ◦C 1984–1985 −1.0 ◦C
1986–1987 1.2 ◦C 1988–1989 −1.7 ◦C
1987–1988 0.8 ◦C 1995–1996 −0.9 ◦C
1991–1992 1.7 ◦C 1998–1999 −1.5 ◦C
1994–1995 1.0 ◦C 1999–2000 −1.7 ◦C
1997–1998 2.2 ◦C 2000–2001 −0.7 ◦C
2002–2003 0.9 ◦C 2005–2006 −0.8 ◦C
2004–2005 0.6 ◦C 2007–2008 −1.6 ◦C
2006–2007 0.7 ◦C 2008–2009 −0.8 ◦C
2009–2010 1.5 ◦C 2010–2011 −1.4 ◦C
2014–2015 0.6 ◦C 2011–2012 −0.8 ◦C
2015–2016 2.5 ◦C
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2.2. Reanalysis Data

Contemporary atmospheric reanalysis datasets provide spatially complete multivariate records of
the global atmospheric circulation that are critically important for advancing the understanding of the
Earth’s irregularly observed atmosphere [27]. Development of such reanalysis products requires
processing large quantities of historic observations using advanced data assimilation methods
(e.g., 4D-Var; [27]). ERA-Interim was produced at high spatial (~0.7◦ lat/lon) and temporal
(6-hourly analyses) resolution over a global domain between January 1979 to the present by
the European Centre for Medium-Range Weather Forecasts [53,54]. Data were acquired from
the Computation and Information Systems Laboratory at the National Center for Atmospheric
Research (CISL NCAR). The subset of the ERA-Interim output utilized for the current work were
six-hourly model analyses of specific humidity (q), temperature (T), and zonal (u) and meridional (v)
components of wind provided on model levels between January 1979 and June 2016. ERA-I model
levels adhered to the eta vertical coordinate system characterized by terrain-following sigma
coordinates at the lowest model levels and the model surface, hybrid pressure-sigma coordinates at
mid to low-levels, and pressure coordinates in the upper atmosphere [55]. Pressure in the eta coordinate
system is a function of surface pressure (ps) and a pair of time-independent, spatially invariant
coefficients denoted by a and b (Equation (1)), which vary in the vertical, but not horizontal dimensions.

pk(x, y, t) = ak + bkps(x, y, t), (1)

Here k is a generalized vertical index for each of the 60 vertical model levels, x represents longitude,
y represents latitude, t represents time, and ps represents surface pressure. For the purposes of the
current work, only the lowest 30 model levels were considered, given the higher vertical resolution,
uncertainties regarding stratosphere-troposphere transport [56], and the lack of moisture above the
30th model level [57] that is, at 202.09 hPa (assuming a standard surface pressure of 1013.25 hPa).
The most accurate density-weighted vertical averages denoted by 〈·〉 were calculated using reanalysis
output on the original model levels [58], which were evaluated according to Equation (2):

〈·〉 =
∫ ml30

ps

(·)dp
g

, (2)

Here, ml30 represents the 30th model level, ps represents surface pressure, dp represents the
pressure thickness between model layers, and g represents gravitational constant. The mass-weighted
vertically averaged horizontal sensible and latent heat fluxes are 〈vT〉 and 〈vq〉, respectively,
where v = (u,v) with a slight abuse of notation. Divergence was calculated at each six-hourly time step
after performing the mass-weighted vertical average using MATLAB’s© (Mathworks, Natick, MA,
USA) divergence function. Six-hourly outputs of sensible and latent heat fluxes and their divergence
was averaged weekly and stored in multi-dimensional arrays according to the following structure
[latitude, longitude, week of year, year]. Each month was split into four weeks of equal length such
that week length for the DJF period was variable between 7 and 7.75 days, depending on month length.

2.3. Vertically Integrated Energy Budget

Mayer and Haimberger [59] define the vertically integrated equation for the total energy content of
an atmospheric column:

1
g

∂
∂t

∫ ps
0
[(

cpT +φs + Lq + k
)
v
]
dp + 1

g

∫ ps
0
[
∇·
(
cpT + φ + Lq + k

)
v
]
dp + Fs − RadTOA = 0 (3)

In Equation (3), g denotes gravitational acceleration; p is pressure; ps is surface pressure; cp is the
specific heat at constant pressure; T is temperature; φ is geopotential; L is latent heat of vaporization;
q is specific humidity; k is specific kinetic energy; v is horizontal wind; Fs is the net energy balance at
the surface; and RadTOA is the net radiative balance at the top of the atmosphere (TOA). When fully
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expanded, the second term on the left hand side of (3) contains the divergence of vertically integrated
latent and sensible heat terms that are analyzed in this work. Divergence of 〈vT〉 and 〈vq〉 terms
results in sources and sinks of latent and sensible heat corresponding to changes in non-radiative
terms of the surface energy balance, defined as:

∆SWabsorbed + ∆LWdown + ∆LWup + ∆SH + ∆LH = 0 (4)

In Equation (4), ∆SWabsorbed refers to absorbed shortwave radiation, ∆LWdown refers to downward
longwave radiation, ∆LWup represents upward longwave radiation, ∆SH represents sensible heat
fluxes, and ∆LH represents latent heat fluxes [60].

2.4. Data Scaling

After preceding calculations were performed, data were scaled to provide the divergence of
horizontal fluxes of sensible and latent heat in the same units (kJ m−2 s−1), and to allow for direct
comparison of heat flux divergence [35]. All horizontal fluxes of sensible heat were scaled by the
specific heat of water (4.181 kJ kg−1 K−1) under standard atmospheric conditions (20 ◦C, 1013.25 hPa).
All horizontal fluxes of latent heat were scaled by the latent heat of vaporization of water (2265 kJ kg−1)
at standard atmospheric conditions. Additional scaling was performed to each figure panel such that
the maximum plotted scalar divergence or vector magnitude was equal to the maximum value of
the corresponding color bar. Reducing the maximum vector magnitudes in each plot to a common
value (i.e., maximum of color bar) did not alter the vector direction, and clarified the spatial patterns of
vectors away from the global maximum values. Given the global domain, the Eckert IV map projection
was chosen to substantially reduce graphical distortion [61], and was centered on the central Pacific
Ocean where the ENSO phenomena occurs.

2.5. Symmetry and Asymmetry

The symmetric component of anomalous horizontal, and tropospheric mean fluxes of sensible and
latent heat were quantified by subtracting the composite analyses of each vector component during
La Niña from that of the El Niño composites [26,29]. The asymmetric component of the anomalous
horizontal, and tropospheric-mean fluxes of sensible and latent heat were quantified by adding each
vector component of the composite analyses of El Niño and La Niña [26,29]. Addition or subtraction of
composite analyses was performed after all spatial and temporal averages were performed as described
above. Therefore, the symmetric component shows the linearity (i.e., mirror image) of anomalies
during El Niño and La Niña events whereas the asymmetric component shows the non-linearity
(i.e., El Niño is > or <La Niña) of anomalies. Assuming perfect symmetry, the asymmetric component
is equal to zero, and the symmetric component is double the anomalies that are associated with either
El Niño or La Niña [62].

3. Results

The results of the current work are focused on the spatial distribution of large sensible
(>300 kJ m−2 s−1) and latent (>0.0025 kJ m−2 s−1) heat flux divergence anomalies that may result in
predictable surface temperature and precipitation anomalies, respectively. Additional results detailing
the anomalous vector magnitude are included in Appendix A for reference.

3.1. Sensible Heat Flux Divergence

Regions of anomalous sensible heat flux divergence and convergence alternated sign depending on
the latitude across the East Pacific Ocean (180◦ to 120◦ W in NH; 150◦ W to 90◦ W in SH). For example,
anomalous divergence was apparent directly over the Niño 3.4 region during El Niño events, whereas
anomalous convergence was apparent in this region during La Niña events (Figure 1). Across the
northeast Pacific Ocean, a strongly anomalous (>600 kJ m−2 s−1) region of anomalous sensible heat
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flux convergence was located between 30◦ N and 60◦ N during El Niño events, whereas La Niña
events were characterized by strongly anomalous divergence (Figure 1). An analogous region of
somewhat less anomalous (<300 kJ m−2 s−1) sensible heat flux convergence or divergence was across
the southeast Pacific Ocean (150◦ W to 90◦ W, 20◦ S to 45◦ S) during El Niño or La Niña events,
respectively (Figure 1). At polar latitudes (>60◦ N/◦ S), divergence was favored during El Niño
events and convergence was favored during La Niña events (Figure 1). Results therefore illustrate that
El Niño (La Niña) events result in anomalous sensible heat flux divergence (convergence) at tropical
latitudes, but they alternate sign twice with increasing latitude across each hemisphere of the East
Pacific Ocean.
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Figure 1. Tropospheric sensible heat flux divergence anomalies for December, January, February (DJF)
during composites of all 13 El Nino events (top) and all 12 La Niña events (bottom) occurring between
1979 and 2016 (Table 1). Color shading represents vector divergence (kJ m−2 s−1).

Results show that during the period of study, a pattern characterized by regions of convergence
and divergence alternating with increasing latitude existed across most of the globe, and were of
opposite sign, depending on the phase of ENSO. For example, results across North and Central America
indicated anomalous divergence at tropical (<20◦ N) latitudes, convergence at subtropical (20◦ N to
40◦ N) latitudes, and divergence at extratropical (40◦ N to 70◦ N) latitudes during El Niño events, and
vice versa during La Niña events. Similar alternating patterns are particularly apparent across the South
Indian Ocean during El Niño events and Eurasia during La Niña events. Additionally, the generally
east-to-west oriented regions of anomalous sensible heat fluxes were tilted from northwest to southeast
across the Pacific Ocean, and from southwest to northeast across the Atlantic Ocean basin, particularly
across the NH. In general, east-to-west oriented regions of anomalous sensible heat fluxes alternated
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sign, depending on latitude, and were generally of the opposite sign based on the phase of ENSO,
but regions exhibited a meridional tilt across the Pacific and Atlantic Ocean basins.

3.2. Symmetry and Asymmetry of Sensible Heat Flux Divergence

The symmetric component showed regions of convergent and divergent sensible heat flux
anomalies that were generally larger than the asymmetric component, and alternated, depending on
the latitude and phase of ENSO. However, in certain regions, asymmetric component anomalies
were of similar magnitude to the symmetric component. For example, across the North Atlantic Ocean
and eastern North America, the asymmetric component was large (>300 kJ m−2 s−1; Figure 2) and of
the same sign as the symmetric component, indicating differences in the magnitude of convergence,
or divergence during each phase of ENSO. However, symmetric and asymmetric components were of
opposite signs across the eastern North Atlantic Ocean and Western Europe, indicating differences
in the magnitude and sign (i.e., convergence or divergence) during each phase of ENSO. Similar
differences in the magnitude and sign of symmetric and asymmetric components of sensible heat flux
divergence extended across most of Eurasia and North Africa, suggesting substantial asymmetries
in ENSO-induced weather and climate anomalies. Across the Southern Hemisphere, the asymmetric
component was generally maximized, where gradients in the symmetric component were large,
suggesting slight differences in position or magnitudes of regions of anomalous sensible heat flux
divergence during each phase of ENSO. Results indicated that the symmetric component was
larger than the asymmetric component, but that substantial asymmetries were apparent in many
locations globally.
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3.3. Latent Heat Flux Divergence

Latent heat flux divergence anomalies were largest (>5 × 10−3 kJ m−2 s−1) across the tropical
Indian Ocean, Pacific Ocean, and adjacent land masses, but anomalies were also large across parts of
extratropical North America, South America, Africa, and Europe (Figure 3). Large latent heat flux
divergence (convergence) anomalies were shown along the west coast of North America and adjacent
mountain ranges during El Niño (La Niña) events. Across eastern North America, similarly large
anomalies of the opposite sign were shown across the Gulf of Mexico and southeastern North America
with smaller anomalies (<2.5× 10−3 kJ m−2 s−1) located to the north at approximately 45◦ N. In Europe,
El Niño events resulted in divergent latent heat flux anomalies in the Alps (approximately 15◦ E 50◦ N)
and generally convergent latent heat flux anomalies across the Mediterranean and the Black Sea,
and vice versa for La Niña events (Figure 3). Results across Africa showed a region of large anomalies
(>± 2.5 × 10−3 kJ m−2 s−1) extending northwest to southeast across tropical southern Africa (<15◦ S),
and a similar region of the opposite sign was shown further to the south (>15◦ S) that included coastal
South Africa, and both regions alternated sign based on ENSO phase. Large latent heat flux divergence
(convergence) anomalies were apparent across the Southern (northern) Andes Mountains during
El Niño (La Niña) events. However, a generally opposite north-to-south gradient was shown across
eastern South America (Figure 3). Additionally, a distinct couplet of divergence and convergence was
associated with the Hawaiian Islands (155◦ W 20◦ N) that reversed polarity based on the phase of
ENSO. As shown in Figure 3, latent heat flux divergence anomalies were largest across tropical oceans
and adjacent land areas, but also extended to extratropical latitudes in multiple locations.
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3.4. Symmetry and Asymmetry of Latent Heat Flux Divergence

The symmetric component may show ENSO-induced alterations to the Hadley and Walker
Circulations, and the symmetric component was larger than the asymmetric component, but substantial
asymmetries extended into the mid-latitudes of both hemispheres. The symmetric component
showed a region of strongly anomalous divergence centered in the equatorial West Pacific Ocean
near 135◦ E, indicating a weakened Walker Circulation during El Niño events, and vice versa during
La Niña events (Figure 4). Additionally, the symmetric component showed similar values across
the southeast coasts of Asia and North America and the east coasts of Australia and South America
near 30◦ N/S, consistent with the Hadley Circulation. The asymmetric component was typically the
largest (>2.5 × 10−3 kJ m−2 s−1) where the gradient in the symmetric component was large, indicating
differences in the position or intensity of anomalous circulations induced by each phase of ENSO.
For example, the asymmetric component was large (>2.5 × 10−3 kJ m−2 s−1) across the northeastern
Pacific Ocean where the symmetric component showed a strongly anomalous (>10 × 10−3 kJ m−2 s−1)
convergent cyclonic anomaly. Thus, the asymmetric component indicates the convergent anomaly
associated with El Niño is positioned closer to the west coast of British Columbia, and the divergent
anomaly associated with La Niña is positioned immediately north of the Hawaii Islands (155◦ W 20◦ N;
Figure 4). Results across the Hawaiian island chain showed a mesoscale couplet of opposite polarity in
the symmetric and asymmetric components of latent heat flux divergence. In summary, the symmetric
component of anomalous latent heat flux divergence may have shown alterations to the Hadley and
Walker Circulations, and while the asymmetric component was smaller, it was generally largest where
the gradient in the symmetric component was large.
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4. Discussion

The current work was undertaken to investigate horizontal sensible and latent heat flux divergence
anomalies that represent physically based proxies for ENSO-induced surface temperature and
precipitation anomalies. This approach is justified due to complexities inherent to modeling the
dynamic surface temperature and precipitation fields with a limited observation network [1,38,39].
Complex sub-grid scale processes and sharp gradients in the time and space of each variable suggest
that alternatives to the reanalyzed fields of surface temperature and precipitation may provide further
insight into ENSO-induced weather and climate anomalies at the global scale. More specifically, some of
the most important effects of ENSO-induced climate variability (e.g., agriculture and freshwater)
are best represented by values of heat and moisture exchange within the soil-plant-atmosphere
continuum [63]. Therefore, the results of the current work may be fundamental to improving our
understanding of ecosystem responses to ENSO, but many challenges still exist.

ENSO event diversity (e.g., amplitude, position, and timing) is arguably the greatest challenge
for improved forecasts of detrimental weather and climate anomalies at a variety of spatial and
temporal scales [18]. Neither event-to-event variability nor statistical significance were addressed
in the current work, due to a small sample size and problems associated with spatial and temporal
autocorrelation in the analyzed fields [64]. While not shown, the standard deviation of latent and
sensible heat flux divergence across all El Niño and La Niña events was approximately one order of
magnitude larger than the composite means shown in this work. However, the symmetric component
(El Niño–La Niña) of standard deviations were of the same order of magnitude as the composite means
shown in this work. Therefore, both El Niño and La Niña events have a similar magnitudes of event
diversity that may be consistent with stochastic noise [14,18].

4.1. ENSO, PNA, and NAO Climate Variability

The symmetric components of both latent and sensible heat was generally larger than the
asymmetric components. However, results presented in Figures 2 and 4 indicate that in many
regions globally, both components were the same order of magnitude during the period of study.
This result implies the climatologically relevant surface temperature and precipitation anomalies
associated with each component, and challenges the common assumption that each phase of ENSO
is equal and opposite. For example, El Niño events are known to strengthen the Aleutian low in
the North Pacific Ocean, consistent with a positive PNA pattern [65] and vice versa for La Niña
events, which is shown in Figures 1 and 3. However, the asymmetric component showed a large
(>400 kJ m−2 s−1) convergent anomaly east of the corresponding symmetric anomaly, suggesting the
strengthened Aleutian low was positioned closer to the west coast of North America during El Niño
events (Figure 2). Conversely, a large divergent anomaly positioned north of Hawaii (155◦ W 20◦ N)
suggests the weakened Aleutian low associated with La Niña events was positioned farther from the
west coast of North America (Figure 2). Positional differences of Aleutian low anomalies associated
with each ENSO phase a consistent with previous composite analyses during the DJF period [26].
Results suggest that smaller SST anomalies during La Niña events and larger SST anomalies during
El Niño events may proportionally influence the east-to-west positioning of Aleutian low anomalies in
the PNA region. Altogether, symmetric and asymmetric components of sensible and latent heat flux
divergence indicate a substantial asymmetric component in the relationship between ENSO and PNA
patterns of climate variability that may be proportional to differences in SST anomalies.
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Similarly, symmetric and asymmetric components were large across the North Atlantic Ocean
and adjacent land masses, suggesting that the asymmetry is fundamental to the relationship between
ENSO and NAO patterns of climate variability (Figure 2). Previous literature documented ENSO
as one of multiple factors influencing the predictability of NAO phase, but ENSO’s influence is not
well understood [10,16,66]. Results of the current work indicated that El Niño events resulted in
larger anomalies along the east coast of North America, whereas La Niña resulted in larger anomalies
across Europe, suggesting that a distinct relationship exists between NAO and each phase of ENSO.
Larger anomalies to the west during El Niño and to the east during La Niña suggest that the distinct
relationship may be inversely proportional to the SST anomaly magnitude. Therefore, the asymmetric
component is non-negligible across PNA and NAO regions, indicating that asymmetry is a fundamental
component of ENSO-induced climate variability across North America and Europe that may be
inversely proportional to differences in SST anomalies.

4.2. Eurasia and the Southern Hemisphere

The asymmetric component was also large across most of Eurasia, and symmetric and asymmetric
components were of opposite sign, indicating that La Niña events resulted in larger implied winter
surface temperature anomalies than El Niño events. La Niña events have been shown to decrease
the rainfall associated with the East Asian winter monsoon, and El Niño events have been shown to
increase rainfall, particularly across southeastern China [67,68]. The results presented in Figures 3 and 4
are consistent with previous findings of ENSO’s influence on the East Asian winter monsoon. However,
most previous studies of the relationship between ENSO and Eurasian climate have focused on the
warm season when La Niña events have been implicated in severe droughts and heatwaves in
Russia [69], and extreme monsoonal flooding in Pakistan and northwest India [70]. Consequently,
the results of the current work suggest that severe warm season climate anomalies associated with
ENSO in Eurasia could be foreshadowed during the boreal winter, which could improve detection and
increasing preparedness months in advance.

Relatively fewer studies have addressed climate variability across the extratropical Southern
Hemisphere, due to the lack of meteorological and oceanographic data [1]. However, symmetric
and asymmetric components of sensible and latent heat flux divergence were of the same
order of magnitude in many locations (Figures 2 and 4), indicating that asymmetry is also a
fundamental component of ENSO-induced weather and climate anomalies in the SH. For example,
each component of the anomalous latent heat fluxes was large across southern Africa, where ENSO
and the Indian Ocean Dipole (IOD) variably influence precipitation [71]. Thus, the large asymmetric
component across southern Africa could be associated with two distinct modes of climate variability.
The asymmetric component of sensible heat flux was typically the largest near gradients in the
symmetric component, suggesting that asymmetries in magnitude of SST anomalies associated
with each ENSO phase may proportionally influence the position or magnitude of SH weather
and climate anomalies. As an example, a gradient in the symmetric component existed at 30◦ S,
45◦ S, and 60◦ S in the South Indian Ocean, but the asymmetric component showed patterns of
anomalous divergence along each aforementioned parallel. This result suggests slight differences in
position or magnitude of phase-dependent ENSO-induced climate and weather anomalies in the South
Indian Ocean. Therefore, asymmetry is a fundamental aspect of ENSO-induced weather and climate
anomalies in both hemispheres, which may be proportional to the asymmetries in surface heat fluxes
associated with each phase of ENSO, but additional research is required to confirm these findings.
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4.3. Directions for Future Work

Given the profound influence of ENSO on global weather and climate anomalies, and the
increasing severity of weather-induced economic and environmental impacts associated with a
warming climate [72], the value of accurate seasonal forecasts has never been greater [14]. However,
the high spatial and temporal resolution of contemporary atmospheric reanalysis datasets is often
underused, indicating a need for studies using reanalysis output on many vertical levels at
intra-seasonal time scales. Specifically, analyses focused during ENSO event genesis and decay
may yield further insight into positive and negative feedback mechanisms that are responsible
for the oscillation between warm and cool ENSO phases [73]. Composite analyses of weak and
strong ENSO events are needed to further examine the potential for proportional differences in
position or magnitude of weather and climate anomalies that are associated with variable SST
anomaly magnitudes. The influence of different ENSO event classifications (e.g., ONI, MEI, SOI)
is needed to better understand the different aspects of ocean-atmosphere coupling associated with
ENSO. Additional future investigations may include contributions from transient, zonal mean,
and stationary wave portions of the circulation [40], diversity in timing, duration, and position of
maximum SST anomalies (i.e., ENSO diversity [18]), or verification of the existing climate model
output [74]. Furthermore, methods outlined in the current work may be used to validate the
spatiotemporal characteristics of the ENSO phenomena that climate models struggle to simulate [75].
Therefore, further investigation using methods similar to those presented in this work may critically
improve the currently incomplete understanding of the extratropical atmospheric response to
ENSO forcing [14].

5. Conclusions

In the current work, anomalous horizontal fluxes of vertically integrated latent and sensible
heat, their divergence, and symmetric and asymmetric components of each, were quantified at
the global scale using a well-regarded and widely used atmospheric reanalysis dataset. The novel
application of global energy budget methodology to the problem of ENSO-induced weather and
climate anomalies, and their symmetry, indicated the potential to improve tremendously valuable
seasonal forecasts of anomalous temperature and precipitation patterns. The results showed the
far-reaching influence of ENSO forcing, and they challenged the common assumption that weather and
climate anomalies associated with each phase of ENSO are simply equal and opposite. The symmetric
component of sensible and latent heat flux divergence anomalies was generally larger than the
asymmetric component, but asymmetry was shown to be a fundamental component of global scale
ENSO-induced weather and climate anomalies. For example, results indicated each phase of ENSO
has a distinct influence on weather and climate anomalies across the PNA and NAO regions, which
may be proportional to known asymmetries in SST anomalies and subsequent surface heat fluxes
across the Niño 3.4 region. Therefore, the novel application of existing methods to ENSO-induced
weather and climate anomalies may improve valuable seasonal forecasts while providing multiple
directions for future research.
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