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Abstract: Precipitation is a particularly important part of the Earth’s hydrological cycle and, therefore,
is a necessary variable for maintaining natural balance. This study investigated past, present, and
future changes in precipitation in the Marmara region, and examined the effects of global warming
on this variable. The study period was from 1960 to 2020, and the climate data of 15 synoptic stations
in the Marmara region were used for this purpose. To achieve the objectives of the study, linear and
6th order polynomial regression, ombrothermic and hythergraph diagrams, geostatistical models,
Mann-Kendall test, Pearson correlation, standard Z-scores, and multi-layer perceptron artificial
neural network models (MLP-ANN) were used to model and predict precipitation. The results of the
linear regression analysis showed that of the 15 stations, 6 stations had an increasing trend, 6 stations
had a trendless pattern, and 3 stations had a decreasing trend. In terms of periodic analysis, the main
downward trend started in 1964 and continued until 1992, while the main periodic upward trend
started in 1992 and continued until 2016. The synoptic stations in the Marmara region showed a lack
of precipitation over six to seven months of the year, and the precipitation changes in the region were
stronger than the temperature changes. In addition, the highest precipitation was observed on the
southeast coast of the Black Sea, and the lowest precipitation was observed in the eastern parts of
the region. Moreover, except for the Bilecik and Kocaeli stations, the changes in the long-term trend
of precipitation at the other stations were significant. Among the 15 stations, only the Kocaeli and
Sarıyer stations showed a positive correlation with global temperature during the annual period. In
addition, the developed ANN model was accurate in simulating and predicting precipitation and
showed an upward trend over the next seven years.

Keywords: precipitation modeling; machine learning; MLP-ANN model; trend analysis; Mann-Kendall
test; GLOTI index; global warming effect; Marmara region

1. Introduction

Precipitation is one of the most important inputs for applications in hydrology, climate
change, and ecological research since it exhibits large variability at spatial and temporal
scales, with spatiotemporal heterogeneity having a significant impact on the hydrological
cycle and land surface processes [1–7]. Over the past decade, there has been an increasing
interest in studying precipitation regimes, both globally and regionally, in the context
of global warming. Most researchers believe that the 0.74 ◦C–0.85 ◦C increase in global
average air temperature over the last hundred years (1880–2012) [8,9] has caused an increase
in the amount of water vapor in the atmosphere and changes in the hydrologic cycle and
atmospheric circulation. It has also been emphasized that the global increase in precipitation
frequency and intensity, especially in extreme precipitation, causes flooding, landslides,
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and loss of life [10–17]. Some studies have shown an increase in the intensity and frequency
of potentially hazardous precipitation in the mid-latitudes of the Northern Hemisphere,
especially north of 35◦N latitude [11,18,19]. The average global precipitation is likely to
increase owing to increases in the atmospheric moisture storage capacity associated with
global warming [20]. However, future precipitation changes were not uniform. By the end
of the 21st century, the average annual precipitation is expected to increase at high latitudes,
the equatorial Pacific, and many humid mid-latitude regions, whereas it is expected to
decrease in many dry mid-latitudes and subtropical regions. Observations have indicated
an increase in average precipitation over land areas in the mid-latitudes of the Northern
Hemisphere since 1951 [21].

The Mediterranean basin is located in the transition zone between the temperate
and rainy climate of southern Europe and the arid climate of northern Africa and is
potentially vulnerable to climate change [22]. In recent decades, winter precipitation in the
Mediterranean region has shown a general downward trend in recent decades [23–26]. The
eastern Mediterranean region has been prone to climatic conditions of drought since the
mid-20th century [27–30]. In Türkiye, there are spatial differences in precipitation between
the southern coast and the northern and western coastal regions [31,32] and between coastal
and mountainous regions [33].

One of the coastal regions of Türkiye is the Marmara region which accounts for 40%
of Türkiye’s population, production, trade, and cultivation, and is considered the country’s
most important economic resource.

Due to excessive population growth in the region and increased migration to the
region, the supply of water for various industrial, agricultural, and potable purposes will
be one of the major challenges for the responsible organizations. Therefore, analyzing the
precipitation trend and its long-term changes over 61 years, studying the impact of global
warming on precipitation in the region, and predicting the trend of precipitation changes
over the next seven years can provide comprehensive and accurate information and data
to researchers and decision-makers. Therefore, the main objectives of this study are the
following:

◦ To study the general situation of precipitation in the Marmara region during the last
61 years.

◦ To analyze the changes and variations of precipitation trends in the Marmara region
during the last 61 years.

◦ Investigation of the annual and seasonal spatial distribution of precipitation in the
Marmara region.

◦ Analysis of the impact of climate change and global warming on precipitation in the
Marmara region.

◦ Modeling and prediction of precipitation in the Marmara region for the next 7 years.

2. Data and Methods
2.1. Study Area

The Marmara region (Figure 1), with a total area of 67,306 km2, is located in the
most industrialized and populated region of Türkiye [34] which is covered by low-lying
valleys and plateaus. Its climate is a mixture of Mediterranean and humid subtropical
climate on the Aegean and southern Marmara Sea coasts, oceanic climate on the Black
Sea coasts, and humid continental climate in the interior of Thrace and Anatolia with
hot and moderately dry summers and cold, rainy, and sometimes snowy winters. The
average annual temperature in Marmara was 14 ◦C; the average temperature in January,
the coldest month, was 4.9 ◦C, and the average temperature in July, the warmest month,
was 23.7 ◦C. Coastal climate provides relatively mild temperatures. The average annual
relative humidity in the area was 73%. The average annual precipitation in the region is
690 mm, with strong spatial variations: 800 mm in the eastern part of the region and less
than 600 mm in the central and western parts [35,36].
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Figure 1. The location of the study area and distribution of the synoptic stations.

2.2. Data

Two data categories were used in this study. The first category includes precipitation,
temperature, wind, humidity, barometric pressure, and sunshine data related to the synoptic
stations. For this study, 15 synoptic stations (Table 1) in the study area with long-term
records starting from 1960 to 2020 were used. The second category of data is the index
of global land-ocean temperature anomalies (GLOTI index), known as global warming
data, obtained from the NOAA organization website (https:/data.giss.nasa.gov/gistemp/
(accessed on 24 February 2023)).

2.3. Methods

The general procedure of the study is as follows. First, statistical analysis was con-
ducted on the precipitation data in the Marmara region. The situation, trends, changes, and
variations in precipitation in the region were then studied. To understand the spatial distri-
bution of precipitation in the region, the amount of precipitation was interpolated using a
geostatistical analysis model, the radial basic function (RBF) method, in the GIS platform.
A linear regression model and 6th-order polynomial regression were used to analyze the
trends of precipitation and its changes and variations. Furthermore, ombrothermic and
hythergraph diagrams were used to understand the precipitation situation in the region
during the year [37,38]. In addition, the non-parametric Mann-Kendall test was used to

https:/data.giss.nasa.gov/gistemp/
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analyze and identify the trend changes in the precipitation data. To understand the impact
of GLOTI index on precipitation in the Marmara region, both datasets were evaluated
using the Pearson correlation and standard Z-scores. Finally, for modeling, simulation,
and prediction of precipitation over the next seven years, first, the predictability of the
precipitation variable was evaluated by the Hurst exponent using the Rescale Range (R/S)
method, and then the precipitation variable was predicted using the machine learning and
Multilayer Perceptron-Artificial Neural Network (MLP-ANN) method with the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm after normalization of precipitation data. In
order to validate the performance of the developed MLP-ANN model, the R2 method was
used. The main models used in the study are described in detail below and the flowchart
of the study is shown in Figure 2.

Table 1. The specifications of the synoptic stations in the Marmara region.

Row Station No Station Altitude (m) Latitude (Degree) Longitude
(Degree)

1 17,175 Ayvalık 4 39.3113 26.6861

2 17,120 Bilecik 539 40.1414 29.9772

3 17,116 Bursa 100 40.2308 29.0133

4 17,112 Çanakkale 6 40.141 26.3993

5 17,050 Edirne 51 41.6767 26.5508

6 17,145 Edremit 21 39.5895 27.0192

7 17,636 Florya 37 40.9758 28.7865

8 17,110 Gökçeada 79 40.191 25.9075

9 17,052 Kırklareli 232 41.7382 27.2178

10 17,066 Kocaeli 74 40.7663 29.9173

11 17,059 Sarıyer/Kumköy-Kilyos 38 41.2505 29.0384

12 17,069 Sakarya 30 40.7676 30.3934

13 17,061 Sarıyer 59 41.1464 29.0502

14 17,056 Tekirdağ 4 40.9585 27.4965

15 17,119 Yalova 4 40.6589 29.2796

2.4. Nonparametric Testing

Nonparametric statistics are generally much less affected by the presence of outliers
and other forms of nonnormality [39] and provide a measure of monotonic linear depen-
dence [40,41]. The most commonly used nonparametric test for determining trends in
hydrologic, meteorological, environmental, and climate variables is the Mann-Kendall
test (MK) [42,43]. The significant trend determined by the Mann-Kendall test (MK) can
be supplemented with Sen’s slope estimate to determine the magnitude of the trend. The
non-parametric Mann-Kendall test and Sen’s slope estimator have been applied to estimate
trends in meteorological time series [44,45].
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2.5. Mann-Kendall Test-Detection of Mutations

The Mann-Kendall test can also be used to detect sudden changes in climate and
hydrological data [46–50]. For an assumed data series K (k1,k2,· · · ,kn) n is the length of the
data series. First, the cumulative statistic parameter Sk, being the cumulative number of
values at time i that are greater than at time j, is calculated as follows:

Sk = ∑k
i=1 ri k = 2, 3, · · · , n, (1)

ri =

{
1 ki > k j
0 ki ≤ k j

j = 1, 2, · · · , i− 1, (2)

Subsequently, assuming random independence of the time series, the statistic parame-
ter U’I can be defined as follows:

U′ I =
Sk − E(Sk)√

Var(Sk)
k = 1, 2, · · · , n, (3)

U’I = 0, and E(Sk) and Var(Sk) represent the expected value and variance of the
cumulative value Sk, respectively, which are obtained as follows:

E(Sk) =
k(k− 1)

4
, (4)
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Var(Sk) =
k(k− 1)(2k− 5)

72
, (5)

U’I is a standard normal distribution, i.e., a statistical sequence computed from the sequence
of time series X. At a significant level α, a condition of |U’I| > Uα indicates an apparent
trend change within the time series. Using the inverse time series, we calculated U’I
again applying the calculation procedure described above, where UI = −U’I and k = n,
n−1,· · · ,1 [51]. Where the curves of UI and U’I intersect, the starting point of the trend
and changes are approximated. If the curves intersect within the range of (±1.96), it is
the beginning of a sudden change. However, if they intersect outside the critical range, it
indicates the presence of a trend in the time series. Also, when multiple breakpoints occur
near each other, the last one will be considered the breakpoint [52]. Before performing
this technique, the run test was performed on the data to ensure that the data was not
digressive. All of the Mann-Kendall analyses were performed using MATLAB software.

2.6. MLP-ANN Model

The MLP-ANN model is the most extensively used type of ANN’s approach for
modeling hydrological and climatological data [53]. The MLP network is a feedforward
ANN consisting of three layers, input layers, hidden layers, and output layers with a set of
neurons and activation function as shown in Figure 3. Each of the neurons in the input is
connected to all of the neurons of the intermediary, and it is connected to all neurons in
the output layer [54–58]. A feedforward ANN is a basic type of ANN that is capable of
approximating both continuous and integrable functions [59]. The mathematical structure
of the feed forward multilayer perceptron with one output node can be represented by the
following equation [60,61]:

y1 = S1

(
Nj

∑
j=1

wjS2

(
Ni

∑
i=1

wixi

))
, (6)

where y1 is the output ([0, 1]) of the network, xi is the input array (Figure 3), wi the
connection weights between the data node and the hidden layer, wj is the connection
weights from the hidden layer to the output layer, S1 is the activation function from the
Input layer to the hidden layer, S2 is the activation function from the hidden layer to the
output layer.

The MLP networks can approximate universal functions and give the solution of
different tasks such as information processing, recognition of standards, weather forecasts,
image processing, activity forecasts, and others [62].
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The neurons compute a single output from multiple real-valued inputs {x(t)} by
forming a linear combination between inputs weights and then subjected the output to
some nonlinear function according to Ref. [64] given as:

y(t) = vo +
N

∑
i=1

viΨ

(
bi +

n

∑
j=1

wjixi(t)

)
, (7)

where bi is the bias in the hidden layer, wij is the weight of the connection between neuron
in the hidden layer and neuron in the input layer, vi is the weight of the connection between
neuron in the hidden layer and neuron in the output layer, N is the number of neurons in
the hidden layer, Ψ is the transfer function, and y(t) is the single output of MLP network.
The expression in the parenthesis is defined as the perceptron type neutrons according to
Ref. [65]. MLP is usually trained using the back-error propagation algorithm to minimize
errors in the same direction until the steady state is reached [66]. A logistic function was
used as the transfer function in the hidden layer in this study given as:

f (x) =
1

1 + e−x , (8)

where x is the input variable. Thus, in addition to logistic function as a transfer function, the
output of MLP-ANN can be further improved during the training processes by adjusting
the weights in the hidden layer using appropriate training algorithms. In this study, several
training algorithms are tested out and between them the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm was chosen as the best algorithm due to its good training, validation, and
test performance and lower errors.

2.7. Broyden–Fletcher–Goldfarb–Shanno Algorithm (BFGS)

In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
is an iterative method for solving unconstrained nonlinear optimization problems [67,68].
BFGS algorithm was implemented by estimating the inverse odd Hessian function, H di-
rectly with a symmetric positive definite matrix P iteratively using the following steps [69]:

Step 1: The search direction dk was set to be equal to −Pk−1gk where −Pk−1 and gk are
the approximation to inverse Hk−1 and its gradient, respectively, at the kth iteration. The
convergence tolerance was set to be a minimum value of order 10−3.

Step 2: The weights which yield the minimum error along dk was found as:

wk+1 = wk + ηodk, (9)

ηo = min(E(wk + ηdk)), (10)

Step 3: The new gradient gk+1 was computed and the approximation to Pk was
updated using the new weight and gradient information given as:

sk = wk+1 − wk and yk = gk+1 − gk, (11)

Uk =

(
1 +

yT
k Pkyk

sT
k yk

)
sT

k sk

sT
k yk

, Vk =
yT

k Pkyk + Pkyksk

sT
k yk

, (12)

Pk = Pk+1 + Uk + Vk, (13)

The initial approximation to the inverse Hessian matrix (Po) is an identity matrix (I)
which corresponds to the steepest descent (dk = −gk). Matrices U, V, and P are symmetric
and therefore lead to a reduction of weight errors to meet the convergence tolerance [70].

2.8. Normalization of Data

By considering the nature of sigmoid function adopted in ANN, the training data set
values are normalized between 0 and 1 by Equation (14) and passed into the network. After
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the completion of training, the output values are denormalized to provide the results in
original domain.

NOR(Pi) =
Pi −Min(Pi)

Max(Pi)−Min(Pi)
, (14)

where NOR(Pi) is the normalized value of Pi, Min(Pi) is the series minimum value of Pi
and Max(Pi) is the series maximum value of Pi [71,72].

2.9. Measuring the Performance of the Model

Performances of all networks are measured by coefficient of correlation, R2, given by
Equation (15) [73]:

R2 = 1−

m
∑

i=1
(Xi −Yi)

2

m
∑

i=1

(
Y−Yi

)2
, (15)

where:
Xi: Is the predicted ith value
Yi: Element is the actual ith value
Y: Average of the all Y value

2.10. Hurst Exponent Computation with Using of Rescale Range (R/S) Analysis Method

The Hurst exponent measures the long-term memory spread of a data set [74,75].
Several techniques/methods are preferred by different researchers for estimating the Hurst
exponent, of which the rescale range (R/S) analysis method is the most commonly used in
the fields dealing with complex time series [76–80]. In the work of [81], the robustness of
the R/S method compared to the fractional Gaussian noise model for estimating the Hurst
exponent is demonstrated and recommended for use. Therefore, the R/S analysis method
was used in this study. For non-stationary time series, R/S analysis may yield a Hurst
exponent greater than 1 [82]. In this case, the detrended fluctuation analysis method may
be considered. R/S analysis is a means of characterizing the time series, and its operation
is summarized as follows. The first step is to decompose the time series into many shorter
series. Hurst [83] proposed the following five general equations for R/S analysis, which
can be used for any time series and are not limited to Brownian motion time series:(

R
S

)
s
= ksH , (16)

where k is a constant and s is the length of each of the shorter time series; 1 ≤ s ≤ N, N
being the entire length of the time series. R is the range of the time series and S is the
standard deviation.

The range of each size is calculated as [82]:

R = max(z1, z2, z3, . . . , zs)−min(z1, z2, z3, . . . , zs) s = 1, 2, . . . , N, (17)

zs is the cumulative series estimated as:

zs =
s

∑
i=1

yi, (18)

where s = 1, 2, . . . , N. ys is the adjusted time series estimated by subtracting the sample
mean from each of the shorter time series as:

ys = xs − x, (19)
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where s = 1, 2, . . . , N and

x =
∑N

i=1 xi

N
, (20)

The Hurst exponent is estimated as the slope of the line plotted between (R/S)s and s
on a log–log scale.

3. Results
3.1. Basic Statistics Analysis

Table 2 shows the annual statistics of the precipitation variables at the synoptic sta-
tions. According to the table, the lowest average precipitation falls at the Bilecik station at
462.10 mm and the highest average precipitation falls at the Sakarya station at 849.70 mm.
Among the studied stations, Edremit and Gökçeada stations had the highest annual precip-
itation variation coefficient for 61 years with 25%, whereas Sakarya station had the lowest
annual precipitation variation coefficient of 16%.

Table 2. Basic statistics of annual precipitation at the synoptic stations in the study area.

Station Mean
(mm)

Std. Deviation
(mm)

Minimum
(mm)

Maximum
(mm)

Range
(mm) CV (%)

Ayvalık 652.70 140.90 304.60 992.30 687.70 0.22

Bilecik 462.10 79.20 320.40 668.70 348.30 0.17

Bursa 698.60 139.50 446.40 1328.20 881.80 0.20

Çanakkale 615.60 137.90 343.90 977.70 633.80 0.22

Edirne 601.70 129.00 387.00 958.60 571.60 0.21

Edremit 700.00 174.10 377.00 1220.30 843.30 0.25

Florya 643.80 122.60 420.10 969.10 549.00 0.19

Gökçeada 748.80 189.40 326.00 1185.10 859.10 0.25

Kırklareli 580.10 142.00 326.60 990.30 663.70 0.24

Kocaeli 814.10 140.60 579.30 1180.80 601.50 0.17

Kumköy-Kilyos 807.60 170.40 470.60 1231.20 760.60 0.21

Sakarya 849.70 139.30 600.70 1268.50 667.80 0.16

Sarıyer 834.40 162.30 574.20 1218.80 644.60 0.19

Tekirdağ 579.90 132.80 334.60 896.30 561.70 0.23

Yalova 745.80 154.00 472.40 1293.20 820.80 0.21

3.2. Time Series Analysis and Precipitation Situation in the Region

The results of the long-term analysis of the time series trend of precipitation by
linear regression at the stations in the study area showed that the precipitation at these
stations followed three patterns: no trend, upward trend (Figure 4a), and downward
trend (Figure 4b). At the synoptic stations in the Marmara region, no trend was observed
in the long-term time series of the Ayvalık, Bursa, Edremit, Kırklareli, Tekirdağ, and
Yalova stations. Bilecik, Edirne, Kocaeli, Kumköy-Kilyos, Sakarya, and Sarıyer stations
were among the stations with a long-term upward trend, whereas Çanakkale, Florya, and
Gökçeada stations were among the stations with a downward trend. From the results, the
long-term magnitude of the downward trend among the stations was much lower than
the magnitude of the upward trend and the pattern without a trend. Sarıyer station had
the strongest upward trend, with a linear regression slope of 0.0715 mm, while Çanakkale
station had the strongest long-term downward trend, with a linear regression slope of
0.0092 mm.
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Figure 4. The annual time series of precipitation for (a) Sarıyer, (b) Gökçeada stations in the period
1961–2020. We illustrated here the graph of Sarıyer station as a representative of an upward trend
and Gökçeada station as a representative of a downward trend.

However, in terms of periodic studies and according to the results of the 6th-order
polynomial regression, there were two periods of increasing and decreasing precipitation in
the time series at almost all of the stations. The first increasing period was of short duration
at most of the stations, started in 1960, and lasted until 1964–1966. After the short-term
increasing period, a deep and long-term decreasing trend was observed, except at the Florya,
Kocaeli, Kumköy-Kilyos, Sakarya, and Sarıyer stations, which lasted until 1992 (Figure 5a).
The periodic trend in precipitation changed after a sharp decrease, and an upward trend
was observed in the time series of most stations until 2014–2016. Subsequently, there was
a short period of decreasing precipitation fluctuation until the end of 2020. Among the
stations in the region, Kocaeli and Sakarya did not follow the classical periodic trend of the
other stations and always showed an upward trend both in the long term and periodically
(Figure 5b). Bursa had the largest precipitation variation at 881.8 mm.
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Figure 5. The annual time series of precipitation (a) Bilecik, (b) Kocaeli stations in the period
1961–2020. We illustrated here the graph of Bilecik station as a representative of a classical periodic
trend and Kocaeli station as a representative of an upward periodic trend.

The precipitation at most stations during the year followed a similar pattern, with
the lowest precipitation in summer (July-August) and the highest precipitation in winter
(December) (Figure 6a). The precipitation trends throughout the year decreased from
January to August and increased from August to December. However, a few stations,
including Kocaeli, Sakarya, and Sarıyer, did not follow the general pattern and received
almost the same amount of precipitation in spring and summer (Figure 6b).
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Figure 6. The average monthly precipitation amount: (a) Ayvalık, (b) Sakarya stations in the
1961–2020 period. We illustrated here the graph of Ayvalık station as a representative of a clas-
sical monthly precipitation distribution and Sakarya station as a representative of a non-classical
monthly precipitation distribution.

Moreover, the ombrothermic diagrams of the stations showed that the lowest pre-
cipitation and highest temperatures occurred in August and July during the summer.
There were six to seven months when the stations had low precipitation and suffered from
drought; these conditions were fully observed at eight stations (Figure 7a). However, at
some stations, including Edirne and Kırklareli, this period was shorter at approximately
four months (Figure 7b). The dry and low precipitation periods started in late March and
early April and lasted until September and October.
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Figure 7. The ombrothermic diagram of: (a) Ayvalık, (b) Kırklareli stations in the 1960–2020 period.
We illustrated here the graph of Ayvalık station as a representative of a classical conditions of dry
and wet months along the year, and Kırklareli station as a representative of a non-classical conditions
of dry and wet months along the year.

Based on the hythergraph diagram showing precipitation and temperature variations
during the year, it can also be observed that most of the stations had larger precipitation
variations than temperature variations. Most stations had long hythergraph diagrams,
showing that precipitation variations were larger than temperature variations (Figure 8a).
In contrast, at Sarıyer and Kumköy-Kilyos, and to a lesser extent at the Yalova, Tekirdağ,
and Kocaeli stations, temperature fluctuations were greater than precipitation (Figure 8b).
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Figure 8. The hythergraph diagram of: (a) Bursa, (b) Sarıyer stations in the 1961–2020 period, we
illustrated here the graph of Ayvalık station as a representative of a large precipitation variation along
the year, and Kırklareli station as a representative of a large temperature variation along the year. In
Hythergraph diagram the long graph shows the larger precipitation variation than the temperature
and the broader graph shows the vice versa mechanism in the stations.

3.3. Man-Kendall Trend Analysis

The Man-Kendall diagrams of most of the stations in the studied area clearly show
a downward trend from the beginning of the study period until 1992–1994, and then an
upward trend until 2021 (Figure 9a). This phenomenon was observed at approximately 12
out of the 15 stations in the Marmara region. At most stations with this pattern, a sudden
mutation in the precipitation time series occurred at the beginning of the study period.
In contrast, an opposite and upward trend was formed at Kocaeli, Kumköy-Kilyos, and
Sarıyer stations compared to the other stations (Figure 9b). A very important result of the
Mann-Kendall test analysis was that the changes in the precipitation trend of most stations
(except Bilecik and Kocaeli) were significant. There were significant downward changes
at nine stations (Figure 9a), but there were upward at the Kumköy-Kilyos and Sarıyer
stations, and to a lesser extent at the Sakarya and Florya stations (Figure 9b). Significant
changes in the downward trend occurred during the major decline period between 1960
and 1994. After the end of the decline in 1994, the precipitation levels began to increase at
most stations, and sudden changes occurred in the time series. However, since the UI line
did not leave a significant range of ±1.96, the changes that occurred in the precipitation
trends were not significant.
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Figure 9. The annual Mann-Kendall diagram of: (a) Sarıyer, (b) Edirne stations. We illustrated here
the graph of Sarıyer station as a representative of a significant upward trend change, and Edirne
station as a representative of a significant downward trend change. Here UI is the observational time
series and U’I is the inverse time series.
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3.4. Precipitation Distribution in the Study Area
3.4.1. Annual Precipitation Distribution

According to Figure 10, the average amount of precipitation in the region ranged from
462 to 850 mm. The largest amount of precipitation occurs in the northeast and north of
the Marmara region, and the farther away from this area to the south, southwest, and
west, the lower the amount of precipitation. Moreover, Bilecik station and the eastern part
of the study area had the lowest precipitation amounts. The further one moves from the
coasts, especially the Black Sea coast, towards the inland, the lower the annual precipitation
amount in these regions.
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Figure 10. The annual precipitation distribution in the Marmara region.

3.4.2. Seasonal Precipitation Distribution

In winter, most of the precipitation was concentrated in the northeastern and northern
regions, including the Black Sea coast, and in the southwestern part of the study area,
which includes the coast of the Sea of Marmara. In the aforementioned areas, the highest
precipitation amounts occurred in winter, 236–264 mm. In the east of the Marmara region,
where the Bilecik station is located, and in the west of the study area, where the Kırklareli
station is located, the lowest precipitation amounts (169–137 mm) occurred during this
season (Figure 11a). However, in spring, the conditions were somewhat different from those
in winter, and the total amount of precipitation was lower. The amount of precipitation
during this season varies between 188 and 84.2 mm, and the highest amount was observed
in the northeastern regions of the Black Sea coast, northwest, and south of the study area.
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However, the lowest amount of precipitation during this season falls in the western part of
the Black Sea coast and in the southwestern part of the study area on the coast of the Sea of
Marmara (Figure 11b).
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Figure 11. The seasonal precipitation distribution in the Marmara region: (a) winter, (b) spring,
(c) summer, (d) autumn.

In summer, the precipitation in the region reaches a minimum and ranges from 150 to
22 mm. As in the other seasons, the highest amounts of precipitation were recorded on the
eastern coast of the Black Sea. In addition, the northwestern part of the study area receives
a high amount of precipitation, ranging from 150–110 mm. However, the eastern, southern,
and southwestern regions of the study area received the lowest precipitation (80–22 mm)
during this season (Figure 11c).

The Marmara region receives the most precipitation in autumn. The highest annual
precipitation in this region also occurred in autumn. The average amount of precipitation
in autumn ranges from 319 to 138 mm, and the maximum is observed on the Black Sea
coasts in the northeast and north of the study area, and on the coast of the Sea of Marmara
in the southwest of the region. The lowest amount of precipitation is associated with the
Bilecik station in the east of the region. However, the west and northwest also receive less
precipitation (225–138 mm) than other areas (Figure 11d).

3.5. Exploring the Effects of GLOTI Index

Table 3 shows the percentage of annual and monthly correlations between global
temperature and precipitation at the synoptic observation stations. According to the results
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of Pearson correlation, only Kocaeli and Sarıyer stations showed positive correlation with
global temperature with correlation coefficients of 0.274% and 0.289% and coefficients of
determination of 0.075% and 0.084% at a significance level of 0.95%. This shows that global
temperature probably has a slightly direct and positive influence on the precipitation at
these stations. This means that likely an increase in global temperature leads to an increase
in the amount of precipitation and vice versa. Figure 12a,b show the annual relationship
plots between global temperature and precipitation for the Sarıyer station.

Table 3. Pearson correlation coefficient between global temperature and monthly and annual precipi-
tation of the stations.

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annually

Ayvalık 0.122 0.010 −0.187 −0.041 −0.020 0.358 ** 0.113 −0.048 −0.026 0.347 ** 0.023 −0.170 0.085

Bilecik 0.063 0.154 −0.012 −0.022 −0.049 0.335 ** −0.040 −0.188 0.116 0.177 −0.113 −0.016 0.220

Bursa 0.020 0.081 0.050 −0.025 0.171 0.272 * −0.007 −0.200 0.153 0.225 −0.155 −0.176 0.123

Çanakkale −0.039 0.066 −0.039 0.036 −0.068 0.208 −0.088 −0.109 −0.076 0.185 −0.010 −0.183 −0.043

Edirne 0.161 0.062 0.048 −0.039 0.078 0.013 0.209 −0.192 0.013 0.286 * −0.034 −0.059 0.183

Edremit 0.094 0.011 −0.057 −0.036 −0.079 0.098 0.095 −0.152 −0.027 0.304 * 0.031 −0.189 0.018

Florya −0.021 0.150 0.007 −0.148 0.128 0.121 0.045 −0.112 0.091 0.116 −0.088 −0.194 0.000

Gökçeada 0.087 −0.203 0.007 0.045 0.085 0.186 −0.081 0.006 −0.007 0.197 −0.040 −0.128 −0.011

Kırklareli 0.079 0.024 −0.082 −0.179 0.092 0.186 0.205 −0.153 0.166 0.266 * −0.014 −0.106 0.139

Kocaeli 0.228 0.122 0.065 0.005 0.218 0.234 0.204 −0.004 −0.051 0.056 −0.100 0.003 0.274 *

Kumköy-Kilyos −0.049 0.134 −0.054 −0.060 0.005 0.079 0.202 −0.122 0.276 * 0.095 0.037 −0.065 0.131

Sakarya 0.156 0.124 −0.033 0.017 0.303 * 0.172 0.051 −0.067 −0.009 0.091 −0.141 0.012 0.208

Sarıyer 0.049 0.216 0.026 −0.145 0.065 0.288 * 0.127 −0.032 0.245 0.154 0.074 −0.031 0.289 *

Tekirdağ −0.081 0.146 −0.148 −0.072 −0.006 0.021 0.210 −0.126 0.087 0.274 * −0.133 −0.142 0.021

Yalova −0.010 −0.110 −0.086 −0.116 0.223 0.170 −0.084 −0.005 0.029 0.198 0.020 −0.109 0.043

* 0.95% significant level, ** 0.99% significant level.
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Figure 12. The annual relationship graphs between GLOTI index and precipitation for Sarıyer station:
(a) standard Z score relationship graph, (b) scatter plot. The grey circles show the period of time that
the two data sets have most correlation.

From January to April, there was no relationship between the global temperature
and precipitation of the synoptic stations in the region. Only Sakarya station showed a
significant correlation with global temperature at the 0.95% significance level in May, with
a correlation coefficient of 0.303 and a coefficient of determination of 0.091%. In June, the
number of stations correlated with the global temperature increased to four. In this month,
the Ayvalık, Bilecik, Bursa, and Sarıyer stations showed a direct positive correlation with
global temperature, with correlation coefficients of 0.358, 0.335, 0.272, and 0.288 percent,
respectively, and coefficients of determination of 0.13, 0.11, 0.074, and 0.083%, respectively.
There was no correlation with global temperature between the stations in July and August.
However, in September, only the Kumköy-Kilyos station showed a positive correlation with
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global temperature, with significance levels and correlation magnitudes of 0.95 percent and
0.276 percent, respectively.

In autumn, the October precipitation had the highest correlation with global temper-
ature among the months of the year; however, no significant correlation was found in
November and December. Five of the stations had a direct positive correlation with the
global temperature in October. The Ayvalık station had the highest correlation value, with
a correlation value of 0.347% at a significance level of 0.99%. This was followed by Edremit,
Edirne, Tekirdağ and Kırklareli stations with correlation coefficients of 0.304, 0.286, 0.274,
and 0.266%, respectively. As in the other months, the correlation was positive, indicating
that the increase and decrease in global temperature probably caused a direct increase and
decrease in precipitation at these stations. Figure 13a,b show the relationship plots of June
between the global temperature trend and precipitation at Ayvalık station.
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Figure 13. The June month relationship graphs between GLOTI index and precipitation of Ayvalık
station: (a) standard Z score relation graph, (b) scatter plot. The grey circles show the period of time
that the two data sets have most correlation.

3.6. Precipitation Modeling with MLP-ANN

For the prediction and modeling of precipitation in the Marmara region, the annual
precipitation of the entire region was first determined by averaging the annual precipitation
of 15 synoptic stations used in the study. The data were then subjected to a normality test
to ensure that they were normally distributed. After determining the annual precipitation
in the Marmara region, the predictability of the precipitation variables in the region was
evaluated using the R/S method. The Hurst exponent (H) was calculated based on the
slope of the curve of the annual precipitation of the entire area. The Hurst exponent in the
Marmara region is 0.803. The calculated value of H according to the range of represents
the stable behavior of the time series. In such a situation, there is a possibility of repeating
the process of the system in a period in the future. A high Hurst curve indicates a high
long-term storage effect in a time series [84].

The dynamics and structure of the precipitation time series express the temporal
variation in precipitation and influence of various climatic factors. For optimal modeling
of precipitation in the region, the most important factors affecting precipitation should
be identified and used in the ANN model for simulation and future predictions. For this
purpose, nineteen different atmospheric variables that could affect precipitation in the
region were used. The specifications of these variables are listed in Table 4. By performing
the Pearson correlation test, out of the 19 variables used, only five variables that were
significantly correlated with the precipitation amount in the study area were introduced as
inputs to the ANN model. The specifications of the selected variables and their correlation
coefficients are presented in Table 5.
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Table 4. The set of climate variables that are considered as input for the model. The time scale of all
variables is annual.

Row Pressure Humid Cloud Cover Sunshine Temperature Wind

1 Average Average Average Monthly-Sum Average Average

2 Maximum Maximum Maximum Daily Sum-Monthly Ave Maximum -

3 Minimum Minimum Minimum - Minimum -

4 - Ave-Max - - Ave-Max -

5 - Ave-Min - - Ave-Min -

Table 5. The climatic variables with significant correlation with the annual precipitation in the region.

Variables Ave-Pressure Ave-Temp Min/Ave-Temp Max-Cloud Ave-Humid

Correlation −0.482 ** 0.28 * 0.312 * 0.281 * 0.301 *

* 0.95 Significant level, ** 0.99 Significant level.

Table 5 shows that, with the exception of the variable of average pressure, which has a
negative correlation with precipitation in the region with a significance level of 0.99%, the
remaining variables have a positive correlation with a significance level of 0.95%. Among
the variables that have a positive correlation with regional precipitation, the variable of
average minimum temperature with 0.312% has the highest correlation coefficient. The
variables average humidity with 0.301, maximum cloudy days with 0.281 and average
temperature with 0.28 correlation coefficient are in the following categories. The ANN
model used in this study is a three-layer perceptron network using backpropagation
training (BP) along with the BFGS learning algorithm. It should be noted that the learning
algorithm used had the lowest error rate compared to other MLP algorithms in precipitation
modeling of the Marmara region with five defined input layers. The topology as well as
the characteristics of the ANN used are shown in Figure 14 and Table 6.
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Table 6. The characteristics of the developed ANN model.

Name Hidden Layer Number of Neuron Training Algorithm Error Function Hidden Activation Output Activation

MLP 1 4 BFGS SOS Exponential Tanh
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The BFGS training algorithm of the MLP-ANN was used to establish, train, validate,
and test the efficiency of predicting the actual precipitation in the Marmara region based
on five climate variables. Seventy percent of the sixty-one yearly in situ data points were
used to train the network, 15 percent were used for validation to check the overfitting
tendency of the network, and the remaining 15 percent were used to test the accuracy of
the ANN models.

The results of the precipitation modeling in the Marmara region by MLP-ANN using
the BFGS algorithm are shown in Figures 15–17. According to the results, the selected
ANN model simulated actual precipitation in the Marmara region. Looking at the scatter
plot showing the correlation between the actual precipitation values in the area and the
values predicted by the ANN model, the R2 value of this model was 0.778%. From
Figures 15 and 17, it can be seen that the simulation of the real precipitation in the Marmara
region by the developed ANN model has been well performed, which is especially evident
for the period from 1999 to 2021.
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The actual amount of precipitation in the region was significantly overestimated four
times by the ANN model, with the highest value of 44.2 mm 1985. However, the actual
amount of precipitation was significantly underestimated five times, with the highest value
recorded in 1981 at 268.11 mm (Figure 17). The prediction of precipitation amount by the
developed ANN model until 2027 showed an upward trend in the future. The maximum
predicted precipitation is 974 mm in 2027, and the minimum predicted amount is 629 mm
in 2025. In general, the upward scenario predicted by the ANN was consistent and fully
compatible with the general precipitation trend in the Marmara region during the last
61 years.

4. Discussion

According to the time series analyses, the long-term trend of precipitation in the
weather stations of the Marmara region in Turkey does not follow a constant pattern, and
there is either an upward trend, a downward trend, or no trend in the long-term time series
of these stations. These results are in agreement with results of previous studies [85–89].
However, the noteworthy point in this regard is the superiority of the upward and trendless
pattern compared to the downward trend of precipitation in the stations, which indicates
almost no downward slope of precipitation in the entire region during the past 61 years.
Among the stations, six stations have experienced no trend, six stations have experienced
an upward trend, and three stations have experienced a downward trend in their long-term
time series. In terms of analyzing the periodic trend of precipitation at the stations of the
Marmara region, two downward and upward periods can be identified in the 61-year time
series. However, 2 out of the total of 15 stations in the region did not follow this trend
and have always experienced an upward trend in the long term. The upward periods of
precipitation among the stations were mostly short-term upward periods (from 1960 to
1964–1966) and long-term upward periods (from 1992 to 2014–2016), and the downward
periods also included a long-term downward period (from 1964–1966 to 1992) and a
short-term downward period (from 2014–2016 to 2020). The mentioned ascending and
descending periods are consistent with the results of the study on the precipitation trend in
Greece [90]. The results of the time series analysis section contradict the findings of some
researchers [26,86,90–94] who suggested a decreasing trend in precipitation in the Eastern
Mediterranean regions, while on the other hand, it is consistent with the results of some
researchers [36,95] who proposed an upward trend and no trend in precipitation in the
long term in the region.

The monthly and seasonal precipitation distribution among the studied stations fol-
lows the pattern of Mediterranean precipitation distribution [96] that can be described as
minimum amount of precipitation in the summer and the maximum amount in late autumn
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and winter. The stations in the study area experience four-seven months of precipitation
stress and suffer from a lack of precipitation. This has led to evident changes in precipita-
tion compared to temperature which is well demonstrated by analyzing the ombrothermic
and hythergraph charts of the stations. The research conducted by [30] confirms the results
of this study.

The Mann-Kendall trend analysis method is also one of the common methods that
has been widely used by researchers in various fields to investigate trends in time series
data, especially in meteorological data [46–50]. Despite the advantages of this method,
which has a high ability to identify monotonic trends of a variable and is faster than
parametric methods, its results may not be reliable for the data with seasonal and serial
correlation [44,45]. The Mann-Kendall trend test indicates the presence of a trend in the
precipitation data for the stations except for the Bilecik and Kocaeli stations. The trend
observed at the beginning of the time series in most stations is a long-term downward
trend. This long-term decreasing trend has been observed in 12 stations and in 9 of these
stations, the change in trend has been statistically significant with the departure of the UI
line from the significance threshold of ±1.96%. The period in which the significant change
in the decreasing trend occurred among the stations was between 1989 and 1995. After this
period, the decreasing trend transformed into an ascending one until the end of the study
period, which is not statistically significant. On the other hand, the time of the onset of
this sudden change in trend, which led to a decreasing mutation in the precipitation trend
of the stations, was between 1965 and 1972, which can be considered as the start of the
decreasing trend in the stations. However, in the three stations of Kocaeli, Kumköy-Kilyos,
and Sarıyer, the initial trend has been upward, and except for the Kocaeli station, in the
remaining two stations located in the Bosporus area of Istanbul, this upward trend has
been statistically significant. This may be as a result of air masses that affect this part of
the study area and lead to the formation of a different pattern compared to other stations
in the region [85]. These results are consistent with the results in [85,86,91,92,97,98], and
contradict the results of studies by [88,89].

The annual precipitation in the region was analyzed and it was found that the north-
east of the Marmara Region that is influenced by the Black Sea, and the central parts of
Istanbul that includes Bosphorus receive the greatest amount of precipitation. The annual
precipitation decreases by moving away from these areas and in the eastern regions that are
distant from the coasts, it reaches its minimum level. These findings are in line with those
of the study conducted by [99]. The spatial distribution of total precipitation has the same
pattern for all seasons. This can be attributed to the impact of air masses that originate
from the north, travel over the Black Sea, and carry a considerable amount of moisture
before reaching these areas. This leads to a higher precipitation amount compared to other
regions. Since the air mass penetrating the region loses its highest moisture content in the
coasts and slopes facing the northern highlands, areas far from the coastline receive less
precipitation. Among these areas, the eastern parts of the region are the areas with the
lowest precipitation, as reported in the studies by [100,101].

The impact of global temperature fluctuations on precipitation of the stations has been
limited but positive. Only two stations, Kocaeli and Sarıyer, had a positive correlation with
global temperature changes for the annual precipitation during 61 years. The correlation
between temperature fluctuations and precipitation has also been limited on a monthly
basis, with the maximum observed between the stations in October. It should be noted
that the results obtained in this study are based on the direct correlation between global
temperature and precipitation at the investigated stations in the region. Investigating the
indirect effect, as well as the delayed effect of these two parameters on precipitation, may
yield interesting and significant results. However, such analysis is beyond the scope of this
study and will be addressed in further studies.

The neural network model developed in this study was able to simulate the amount
of precipitation in the region well, as evident from the results, and provided an acceptable
prediction. The ANN model is widely recognized as a powerful tool for simulating and
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predicting weather parameters, with a particular emphasis on precipitation. This model has
been utilized by numerous atmospheric science researchers and has consistently produced
satisfactory results, as demonstrated by studies such as those conducted by [102–106].
The MLP-ANN developed in this study accurately predicted the total precipitation in the
Marmara region with an R2 value of 0.778. Furthermore, the prediction for the period up
to 2027 indicates an increasing trend of precipitation in the region in the upcoming years,
consistent with the time series analysis of the region’s stations over a 61-year period.

5. Conclusions

The present study was conducted to investigate the past, present, and future situation
of precipitation in the Marmara region of Türkiye over 61 years (1960–2020). The analysis
showed that during the study period, the upward and zero trends were superior to the
downward trend in the time series of precipitation over the long term. However, in the
short term, the precipitation trends at the stations were different, and two periods of
decreasing and increasing precipitation were observed at most stations. The longest period
of decreasing precipitation generally began between 1964 and 1965 and lasted until 1992.
By contrast, the longest upward trend began in 1992 and lasted from 2014 to 2016. During
the year, the precipitation trend decreased from January to July-August and increased
from August to January, and the lowest amount of precipitation fell first in summer and
then in spring. In general, the stations in the study area experienced low precipitation
and drought for a maximum of six-seven months during the year, and the precipitation
changes and variations in the region were stronger than the temperature. The trend analysis
performed by the Mann-Kendall method showed that out of the 15 stations in the region,
13 stations had a significant change in the time series trend of precipitation. This significant
change in precipitation occurred during a period of sharp precipitation decline in the
1990s. The 61-year distribution of precipitation throughout the region showed that the
highest precipitation amounts were recorded in the northeast of the study area along the
southeastern coast of the Black Sea and northeastern coast of the Sea of Marmara. The
lowest precipitation amounts were recorded mainly in the eastern areas of the region
around Bilecik station. This indicates that the amount of precipitation decreases as one
moves away from the moisture sources.

The study of the effects of the global warIing index (ILOTI index) on the precipitation
amounts at the stations in the Marmara region showed a small positive influence of this
index on the precipitation trend. In the annual dimension, only two stations showed a
positive correlation with global temperature, and among the months of the year, October
showed the highest positive correlation with five stations. The results of the simulation and
prediction of precipitation in the Marmara region using the ANN model show acceptable
accuracy of the modeling and illustrate an upward scenario for precipitation in this region
until 2027.
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