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Abstract: Tropical cyclone prediction is often described as chaotic and unpredictable on time scales
that cross into stochastic regimes. Predictions are bounded by the depth of understanding and the
limitations of the physical dynamics that govern them. Slight changes in global atmospheric and
oceanic conditions may significantly alter tropical cyclone genesis regions and intensity. The purpose
of this paper is to characterize the predictability of seasonal storm characteristics in the North Atlantic
basin by utilizing the Largest Lyapunov Exponent and Takens’ Theorem, which is rarely used in
weather or climatological analysis. This is conducted for a post-weather satellite era (1960–2022).
Based on the accumulated cyclone energy (ACE) time series in the North Atlantic basin, cyclone
activity can be described as predictable at certain timescales. Insight and understanding into this
coupled non-linear system through an analysis of time delay, embedded dimension, and Lyapunov
exponent-reconstructed phase space have provided critical information for the system’s predictability.

Keywords: accumulated cyclone energy (ACE); tropical cyclone activity; North Atlantic basin;
reconstructed phase space

1. Introduction

Chaos is the term used to describe the nonperiodic behavior of a system. Mathemati-
cian and meteorologist Edward Lorenz [1] shaped the understanding of chaotic systems
by describing variable evolution through sensitive dependence on initial conditions [2].
In atmospheric science, predictability is defined as the longest time interval to which the
accuracy and preciseness of a forecast become no better than the climatological mean [3–5].
According to Lorenz [6], predictability is bounded by a non-deterministic atmosphere, ob-
servational limitations, and inadequate characterizations of the atmospheric system. From
these limitations, forecasts of systems without clear periodicity will inevitably degrade
over time. The Accumulated Cyclone Energy (ACE) dataset, a singular time series used to
characterize tropical cyclone basin activity (e.g., [7]), is a likely non-deterministic candidate
for further analysis using methods that are akin to the chaotic nature that Lorenz describes.
It is through the utilization of ACE that we can infer the behavior of the Atlantic basin cy-
clone energy by invoking Takens’ theorem to recover phase space behavior and determine
the predictability of the system. Though there is no single method for determining the
predictability of weather phenomena and their variables, this quantification is important
when dealing with real-time forecasts [5].

Lupo et al. [8] and Lupo [9] describe significant interannual and interdecadal variability
in Atlantic tropical cyclones. Higher frequency El Niño-Southern Oscillation (ENSO)
variability is consistent with tropical cyclone activity from a 3 to 7-year period, while lower
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frequency variations are represented at the interdecadal period by the Pacific Decadal
Oscillation (PDO). Other positively correlated teleconnections include the easterly phase of
the Quasi-biennial Oscillation (QBO) and the Madden–Julian Oscillation (MJO) (e.g., [8,10]);
however, during La-Nina years, the QBO teleconnection was not an effective driver of
activity in recent years as of the publication of [8]. The Atlantic Multidecadal Oscillation
(AMO) index also illustrates patterns of SST variability in the North Atlantic. There exists
a significant link between the AMO and the North Atlantic Oscillation (NAO) and the
development of tropical storms and hurricanes in the basin [10–13].

Additionally, during 2020, there was an explosion in tropical activity in the basin,
surpassing the most ever recorded named storms, occurring in 2005 with 28, by two.
There has also been concern that the recent rise in global temperatures is linked to the
rise in tropical cyclone activity in the Atlantic Ocean Basin, which has been significant
(e.g., [14–16]). Lastly, ACE, as a metric of basin behavior, provides a time series through
which the contributions of teleconnections on many time scales can be linked to tropical
cyclone occurrence [7]. According to [17] and others, ACE is a metric that synthesizes
tropical cyclone occurrence, lifespan, and intensity.

Often, seasonal tropical cyclone prediction is executed through various statistical
methods, including regression, curve fitting, and cross-correlation, which can give rise
to the oversimplification of deep coupled systems. Takens’ theorem lets us describe state
variables from the intrinsic nature of the information encoded from the time series to the
Takens’ manifold. The manifold would then serve as a representative statistical correla-
tion definition of ACE to include embedded signals [18] that arise from teleconnections
modulating the ACE signal. These teleconnections are the linkage between the changes in
the atmospheric circulation occurring in widely separated parts of the globe, both in the
atmosphere and ocean [19].

The goal of this paper is to investigate the use of the Takens’ Method and apply it to
the time series for ACE and tropical cyclone activity in the North Atlantic Basin as well as
determine the post-satellite era predictability of ACE using the Largest Lyapunov Exponent
(LLE) technique. The chaotic time series, not displaying truly stochastic variations, will
have limited predictability based on the LLE. Thus, it is expected that the model forecast
should deviate from the observations with time [5]. Per our literature review, this study
was not conducted previously.

2. Data and Methods
2.1. Study Region

The North Atlantic Basin was chosen as the study region using ACE as the diagnostic
variable from a post-satellite era of 1960–2022. This region captures the primary thor-
oughfare for hurricane and tropical storm development, shown in Figure 1. From the
West African coast, cutting across through the Caribbean and Southwest Atlantic, tropical
cyclones propagate along with easterly wave trains stemming from convection generated
as far east as the Ethiopian highlands.
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Figure 1. The study region. The Atlantic Region as provided by the National Hurricane Center, 2022 
[20].  

2.2. Data 
Colorado State University created a dataset that provides ACE time series values 

from 1851 to 2022 for the North Atlantic basin. Figure 2 shows that the overall behavior of 
ACE values in the basin has nearly doubled in the most recent decades compared to the 
first few. In Figure 2, it can also be observed that as ACE increases, there exists a propor-
tional increase in the number of named storms. This very close trend in behavior between 
ACE and named storms validates the intuitive source of energy modulating the magni-
tude of ACE values in the basin. Statistics from the Colorado States tropical project were 
calculated from the International Best Track Archive for Climate Stewardship [21,22]. The 
correlation between these two time series is robust at 0.73 for the whole dataset but 0.75 
for the time period 1960–2022. Tropical cyclone days ([21] correlate to ACE at 0.93 for the 
whole and 0.92 for the shorter time period, respectively. Correlations are similar or even 
higher for hurricanes, major hurricanes, and the respective cumulative days. 

 
Figure 2. A time series graph of yearly ACE (red—× 104 kt2), the linear regression trend of ACE (blue 
line), and named storms (blue) from 1851 to 2022. The correlation between ACE and named storms 
= 0.73, p = 0.01. 

Figure 1. The study region. The Atlantic Region as provided by the National Hurricane Center, 2022 [20].

2.2. Data

Colorado State University created a dataset that provides ACE time series values from
1851 to 2022 for the North Atlantic basin. Figure 2 shows that the overall behavior of ACE
values in the basin has nearly doubled in the most recent decades compared to the first
few. In Figure 2, it can also be observed that as ACE increases, there exists a proportional
increase in the number of named storms. This very close trend in behavior between ACE
and named storms validates the intuitive source of energy modulating the magnitude of
ACE values in the basin. Statistics from the Colorado States tropical project were calculated
from the International Best Track Archive for Climate Stewardship [21,22]. The correlation
between these two time series is robust at 0.73 for the whole dataset but 0.75 for the time
period 1960–2022. Tropical cyclone days [21] correlate to ACE at 0.93 for the whole and
0.92 for the shorter time period, respectively. Correlations are similar or even higher for
hurricanes, major hurricanes, and the respective cumulative days.

Atmosphere 2024, 15, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. The study region. The Atlantic Region as provided by the National Hurricane Center, 2022 
[20].  

2.2. Data 
Colorado State University created a dataset that provides ACE time series values 

from 1851 to 2022 for the North Atlantic basin. Figure 2 shows that the overall behavior of 
ACE values in the basin has nearly doubled in the most recent decades compared to the 
first few. In Figure 2, it can also be observed that as ACE increases, there exists a propor-
tional increase in the number of named storms. This very close trend in behavior between 
ACE and named storms validates the intuitive source of energy modulating the magni-
tude of ACE values in the basin. Statistics from the Colorado States tropical project were 
calculated from the International Best Track Archive for Climate Stewardship [21,22]. The 
correlation between these two time series is robust at 0.73 for the whole dataset but 0.75 
for the time period 1960–2022. Tropical cyclone days ([21] correlate to ACE at 0.93 for the 
whole and 0.92 for the shorter time period, respectively. Correlations are similar or even 
higher for hurricanes, major hurricanes, and the respective cumulative days. 

 
Figure 2. A time series graph of yearly ACE (red—× 104 kt2), the linear regression trend of ACE (blue 
line), and named storms (blue) from 1851 to 2022. The correlation between ACE and named storms 
= 0.73, p = 0.01. 

Figure 2. A time series graph of yearly ACE (red—× 104 kt2), the linear regression trend of ACE
(blue line), and named storms (blue) from 1851 to 2022. The correlation between ACE and named
storms = 0.73, p = 0.01.
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2.3. Time Series

A time series is a collection of observations of well-defined data that has been obtained
throughout a duration, with repeated measurements [23]. A time series is typically used
to determine the underlying causes and/or trends over a period. The notation used to
typically represent the time series of a dataset is shown in Equation 1.

Here, {Xt} stands for the collection of observations indexed by time, where t is a
member of T, the set of allowed times.

{Xt}, t ∈ T (1)

Previous research from this group demonstrated interdecadal variability in tropical
cyclone numbers as correlated with the PDO [8,9,16]. Figure 3 shows that the variability of
ACE during warm and cool phases aligns in the last two cycles. Despite the lack of satellite
imagery before the 1960s, it was noted as early as the mid-1920s that the cool phases of the
PDO could be marked by higher basin activity.
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Figure 3. A line graph showing the accumulated cyclone energy ACE (red) in comparison to the year
and PDO Index (blue) for the North Atlantic Ocean.

To consider the behavior over the time series, we used ACE to assess the system’s state
variables. ACE is an index used by the National Oceanic and Atmospheric Administration
(NOAA) that depicts tropical basin activity; for this study, specifically, the North Atlantic
Hurricane Basin [23–26]. ACE was chosen over other parameters, such as named storms,
tropical storms, and major/minor hurricanes, as a proxy for the basin activity since ACE
captured a portion of state variables summed over the entire basin, as shown in Figure 3.
This study addresses the degree to which ACE may then be used as a predictive measure
for Atlantic Basin storm activity [23–26]. The time series was analyzed using RStudio,
version 4.2.1 [27], Python, version 2.7.16 (via Spyder [28]), and Julia programming, version
1.17.9.0 [29] to compute and visually distinguish the characteristics of the time series. The
correlation between ACE and the raw PDO Index is −0.19 for the whole time series and
−0.18 from 1960–2022, respectively, and these are significant at p = 0.10. The correlation
between tropical cyclones and the raw PDO index was −0.35, p = 0.01.

Hurricane/tropical cyclone data that was provided by Colorado State University—
Department of Atmospheric Science|Tropical Meteorology Project [21] provides the follow-
ing tropical activity information: year, number of named storms, the days that had a named
storm, the number of hurricanes, number of hurricane days, the number of major hurri-
canes, the number of major hurricane days, and the accumulated cyclone energy, which is
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also known as ACE. The equation used to calculate ACE is shown below in Equation (2),
where Vmax is the estimated sustained maximum wind speed measured in knots.

ACE = ∑(V2
max/104) (2)

3. Results

As shown in Figure 4, there are trends and embedded stochastic behavior from
1851–2022 in ACE that agree with previously published results of tropical cyclone ac-
tivity (e.g., [14–16]). To discuss the data shown in Figure 4, we observe that the typical
range of the ACE index is from 2.5 to 245.3. In the 1930s, the ACE index reached its peak of
around 258. From the years 1950 to 1995, the ACE Index averaged close to 100 and ranged
between 17 and 250. Recently, from 2005 to the present, we have observed a spike in the
ACE index values that are below 250 but are higher than in years past. Overall, the time
series demonstrates broad trends with embedded complexity.
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Various techniques were used throughout this study. The techniques used were time
delay with automutual information, embedded dimensions based on Cao’s algorithm,
Takens’ theorem, and the Lyapunov exponent. These techniques were conducted for an
ACE time series, post-weather satellite era of 1960–2022.

3.1. Time Delay with Auto Mutual Information (AMI)

An estimation of time delay was calculated via mutual information, which has been
shown to produce a preferable phase portrait representation over choosing a zero from
the autocorrelation function [30]. With this mutual information technique from Fraser and
Swinney [31], the dependence of the information in the dataset from the values of X(t + τ)
is compared to the values of X(t). The equation used to calculate the time delay is shown
as Equation (3). From this equation, if [s,q] = [X(t), X(t + τ)], then the information in the
coupled system (s,q) can be measured. The estimated joint distribution, Psq, given by the
delayed image of Q from S, builds on specifying the accuracy of the measurements from a
comparison of information similarity [30].

To calculate the specific time delay for the phase portrait, we chose the first local
minima of the automutual information (I in Equation (3) and AMI in the text) as the time
delay heuristic.

I(S, Q) =
∫

Psq(s, q)log
[

Psq(s, q)
Ps(s)Pq(q)

]
ds dq (3)
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Examining Figure 5, we see that the time delay is determined to be one. The heuristic
was to choose an optimal time delay by inspecting the delay that corresponded with the
first local minimum value of I or when the AMI monotonically decreased to a ratio of
I(τ)/I(0) = 0.2 or 1/e [32].
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3.2. Embedded Dimensions Based on Cao’s Algorithm

Embedding is a method where information in low-dimensional space can translate to
high-dimensional vectors [33]. Embedding in a reconstructed phase space allows for the
identification of order and hidden structures within the stochastic behavior. For instance,
our one-dimensional time series was found to need six embedded dimensions to properly
gain appropriate information for a diagnostic evaluation. This lent itself to constructing a
reconstructed phase space in a three-dimensional phase plane with an x, y, and z-axis [34].

The embedding dimension can be determined using the false nearest neighbor em-
bedding method (FNN) [18] or Cao’s algorithm. Though we describe both methods briefly,
we have utilized Cao’s methodology in our analysis because it has the advantage of being
less sensitive to the number of points in the dataset and not including any subjective
parameters. This method also can differentiate between deterministic and stochastic signals
in the series [32].

For the FNN method, the parameter of m was determined by evaluating the change
in neighboring points’ distance in phase space as the original time series is embedded in
higher dimensions [35]. The general idea of FNN is for each point, say, xi in the time series,
using its nearest neighbor, xj in an m-dimensional space, to compute their distance given by
|| xi − xj ||. We can determine the change in distance by adding a dimension to evaluate
the closeness of the points.

Ri =
| xi+1 − xj+1 |
|| xi − xj ||

(4)

If Ri exceeds a threshold, say, Rt then this point is deemed as having a false nearest
neighbor. The criterion is the embedding dimension and is relatively large enough such
that the fraction of points for which Ri > Rt is zero or sufficiently small. This criterion
can be used to test the sequence of points as the dimensions increase and find where the
fraction of false neighbors goes to zero [36].
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For the Cao’s method, we consider a time series, say, {Xi}n
i=1, and for an embedding

of m and m + 1, let {Y m
i
}N(τ,m)

i=1 and {Ym+1
i }N(τ,m+1)

i=1 be Takens’ reconstructed time series
where i = 1, 2, . . ., N and N = n − (m − 1)τ. Also, let the nearest neighbor to Ym

i be denoted
as Ym

n(i, m)
. Similarly, we define n(i, m + 1). We then consider Equation (5) as [32]:

a(i, m) =

∥∥∥Ym+1
i − Ym+1

n(i, m+1)

∥∥∥∥∥∥Ym
i − Ym

n(i, m)

∥∥∥ (5)

where ∥.∥ is the max norm. Let E(m), the average of this variable over all i, be defined as
Equation (6) [32].

E(m) =
1

N − mτ ∑N−mτ

i=1 a(i, m) (6)

It is given that two points in m-dimensional reconstructed space will be close to
(m + 1) reconstructed space for them to be termed true neighbors. This is measured by the
parameter E1(m) given by Equation (7) [32].

E1(m) =
E(m + 1)

E(m)
(7)

The minimum embedding dimension can be identified when E1(m) is a constant.
Also, to determine whether the data are stochastic or deterministic, we analyze a

second function, E2(m), defined in Equation (8) [32].

E2(m) =
E∗(m + 1)

E∗(m)
(8)

where E*(m) = 1
N−mτ ∑N−mτ

i=1 |Xi+dτ − Xn(i,m)+dτ |.
If the dataset is deterministic, then E2(m) is dependent on m; as such, there will

exist at least one m such that E2(m) ̸= 1 (or any). If the data are random, then for all
m, E2(m) = 1 [32]. We found that the appropriate embedded dimension associated with
the dataset was six, as seen in Figure 6. This is where E1(m) plateaus. This signifies that
the time series is sufficient in capturing the chaotic dynamics, as its numerical value for
the embedding dimension is not significantly large. This is so because high-dimensional
deterministic chaos, although non-existent for all random noise, translates to stochastic
variability [5]. Also, this dataset was determined to be deterministic rather than stochastic
because there exist embedding dimensions, m (in Figure 6, m = d), for which E2(m) is not
equal to 1.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 14 
 

 

can be used to test the sequence of points as the dimensions increase and find where the 
fraction of false neighbors goes to zero [36]. 

For the Cao’s method, we consider a time series, say, {𝑋𝑋𝑖𝑖}𝑖𝑖=1𝑛𝑛 , and for an embedding 
of m and m + 1, let {𝑌𝑌𝑖𝑖𝑚𝑚}𝑖𝑖=1

𝑁𝑁(τ,m) and {𝑌𝑌𝑖𝑖𝑚𝑚+1}𝑖𝑖=1
𝑁𝑁(τ,m+1) be Takens’ reconstructed time series 

where i = 1, 2, …, N and N = n − (m − 1)τ. Also, let the nearest neighbor to 𝑌𝑌𝑖𝑖𝑚𝑚 be denoted 
as 𝑌𝑌𝑛𝑛(𝑖𝑖,𝑚𝑚)

𝑚𝑚 . Similarly, we define n(i, m + 1). We then consider Equation (5) as [32]: 

𝑎𝑎(𝑖𝑖,𝑚𝑚) =
�𝑌𝑌𝑖𝑖

𝑚𝑚+1− 𝑌𝑌𝑛𝑛(𝑖𝑖,𝑚𝑚+1)
𝑚𝑚+1 �

�𝑌𝑌𝑖𝑖
𝑚𝑚− 𝑌𝑌𝑛𝑛(𝑖𝑖,𝑚𝑚)

𝑚𝑚 �
  (5) 

where ‖. ‖ is the max norm. Let E(m), the average of this variable over all i, be defined as 
Equation (6) [32]. 

𝐴𝐴(𝑚𝑚) =  1
𝑁𝑁−𝑚𝑚𝑚𝑚

∑ 𝑎𝑎(𝑖𝑖,𝑚𝑚)𝑁𝑁−𝑚𝑚𝑚𝑚
𝑖𝑖=1   (6) 

It is given that two points in m-dimensional reconstructed space will be close to (m + 
1) reconstructed space for them to be termed true neighbors. This is measured by the pa-
rameter E1(m) given by Equation (7) [32]. 

𝐴𝐴1(𝑚𝑚) =  𝐸𝐸(𝑚𝑚+1)
𝐸𝐸(𝑚𝑚)

  (7) 

The minimum embedding dimension can be identified when E1(m) is a constant. 
Also, to determine whether the data are stochastic or deterministic, we analyze a sec-

ond function, E2(m), defined in Equation (8) [32]. 

𝐴𝐴2(𝑚𝑚) = 𝐸𝐸∗(𝑚𝑚+1)
𝐸𝐸∗(𝑚𝑚)

  (8) 

where 𝐴𝐴∗(𝑚𝑚) =  1
𝑁𝑁−𝑚𝑚𝑚𝑚

∑ |𝑋𝑋𝑖𝑖+𝑑𝑑𝑚𝑚 −  𝑋𝑋𝑛𝑛(𝑖𝑖,𝑚𝑚)+𝑑𝑑𝑚𝑚
𝑁𝑁−𝑚𝑚𝑚𝑚
𝑖𝑖=1 |. 

If the dataset is deterministic, then E2(m) is dependent on m; as such, there will exist 
at least one m such that E2(m) ≠ 1 (or any). If the data are random, then for all m, E2(m) = 
1 [32]. We found that the appropriate embedded dimension associated with the dataset 
was six, as seen in Figure 6. This is where E1(m) plateaus. This signifies that the time series 
is sufficient in capturing the chaotic dynamics, as its numerical value for the embedding 
dimension is not significantly large. This is so because high-dimensional deterministic 
chaos, although non-existent for all random noise, translates to stochastic variability [5]. 
Also, this dataset was determined to be deterministic rather than stochastic because there 
exist embedding dimensions, m (in Figure 6, m = d), for which E2(m) is not equal to 1. 

 
Figure 6. A graph of E1(d) and E2(d) against dimensions (d) for the ACE (1960 to2022). The embed-
ding dimension was determined to be six. 

Figure 6. A graph of E1(d) and E2(d) against dimensions (d) for the ACE (1960 to 2022). The embedding
dimension was determined to be six.



Atmosphere 2024, 15, 1488 8 of 14

3.3. Takens’ Theorem

Takens’ theorem was created by Floris Takens in 1981 [34]. In this paper, we used
this theorem to reconstruct our one-dimensional time series dataset in reconstructed phase
space. This method offered insights into the nature of the ACE series.

Xi
Xi+τ

.

.

.
Xi+(m−1)τ

 (9)

Tigurius [37] explained that using the Takens’ Embedded Theorem, for time series
with indices, i = 1, 2, . . ., N and N = n − (m − 1)τ [32], sampled from a higher-dimensional
attractor via the multivariate time series, τ is the delay and m is the embedding dimen-
sion [37]. The following is a formal definition given by Takens in [34]. Let M be a compact
manifold of dimension m. For pairs (φ,y), where φ: M→M is a smooth diffeomorphism
(an invertible function that maps one differentiable manifold to another such that both
the function and its inverse are smooth) and y: M→R a smooth function, it is a generic
property that the map ϕ(φ,y): M→R2m+1 defined by

ϕ(φ,y)(x) = (y(x), y(φ(x)), . . . , y(φ2m(x))) (10)

is an embedding.
Figure 7 depicts the non-linear variations of Takens’ vectors with an embedding dimen-

sion of six and a lag of one. Based on the results, the exterior circular trajectories around the
divergent cone indicate feedback within the system around several multiple stable regions.
These stable regions, or clumping of vectors, indicate local continuities and regional stabil-
ity around these discrete limit orbits. These stable regions are translated around the cone’s
central stable axis. The increasing diameter of the cone can be related to the increasing
instability in the system represented by the time series. With this information, the ACE time
series’ displays both chaotic and regionally deterministic characteristics [32,33]. However,
the results shown in Figure 7 for this analysis and similar techniques do not correspond
to particular phenomena, only that there are periods of time when the ACE (or any) time
series demonstrates stability (e.g., behaving like a damped oscillator) and there are periods
of time when the time series is unstable (see [38,39]). Additional testing would be needed to
demonstrate for which timescales there may be predictability and the related phenomenon.

3.4. Lyapunov Exponent

The Lyapunov exponent is defined as the average rate of the exponential divergence
or convergence of nearby trajectories [40]. We calculated the Lyapunov exponent for the
ACE time series. Equation (11) provides a method to calculate the Lyapunov exponent.

To be considered in a steady state, the Lyapunov exponent would have to be zero or
negative for the duration of the dataset. With a Lyapunov exponent value being positive
and ranging between two and four, this indicates a stochastic regime.

λmax = lim
N→∞

1
tN − to

N

∑
k=1

ln
d1(tk)

d0(tk−1)
(11)

The process is as described in [33] and given briefly here. Within the chaotic trajectory,
there would be points with distance d0(t0) at some time t0, and after some time t1, the
distance can be described by d1(t1). The time evolution can be represented by t1–t0, and
then after renormalizing, a new starting point is found.
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The method used in this paper considers that a delayed coordinate embedding of
a time series dataset that shows the exponential divergence of nearby states adheres to
Equation (12) [29].

E(k ) ≃ λ k∆t + E(0) (12)

In Equation (12), E(k) is the average logarithmic distance between states of a neigh-
borhood evolved in k time steps; ∆t is the time interval between samples of the time series.
The slope of E(k) against k gives an estimate of the maximum Lyapunov exponent, λ. The
LLE was determined from Figure 8 to be 0.084.
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Since the system is chaotic, λmax > 0, and the series can be predicted with a forecast
horizon of:

t∗ =
1

λmax
ln(1.96) (13)

where t∗ is the maximum number of observations that can be predicted with an uncertainty
of 1.96ε, which represents a 95% confidence band [32]. From this relation, it is determined
that the prediction horizon is approximately eight time steps.
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4. Discussion

Observing the ACE time series using a reconstructed phase space diagnostic approach,
it is clear from both the attractor and Lyapunov exponent that the system is primarily
chaotic. Despite the chaotic nature, it is evident that stable embedded characteristics
exist. The time series showed that the data were not only chaotic, but there were also
regions of stability in phase space. These may correspond to intrinsic teleconnection signals
(e.g., ENSO, PDO) found within the system, such as those found in many studies [8–14]
using different techniques such as Fourier decomposition or contingency analysis. Coupling
the results from the Lyapunov evaluation, reconstructed phase space, mutual information,
and the embedded dimension, the activity of the tropical cyclones was found to have traits
of deterministic chaos.

This procedure to determine the chaotic nature of the ACE series, as well as the pre-
dictability in terms of climatic variations, was undertaken. However, due to an insufficient
number of data points for the two separate 30-year periods, 1960–1989 and 1990–2019, the
construction of the attractor and the subsequent determination of the Lyapunov exponent
was not feasible. If there are too few data points, these methods may incur errors due to
noise or the inability to capture convergence on a solution. As such, the changes in the
predictability horizon of the system within a 30-year period could not be established.

It could be argued that ACE is not a suitable diagnostic to use here for tropical cyclone
activity as the intensity of these storms is partly controlled by internal dynamics. While that
is true, the high correlation between ACE and tropical cyclone numbers suggests the ACE
time series is an appropriate surrogate as used elsewhere (e.g., [7,41]) since ACE captures
aggregate seasonal tropical cyclone occurrence, duration, and intensity [17].

Additionally, the time series of monthly sea surface temperatures (SST) in the Niño 3.4
region, as provided by [42] for 1960–2019, were tested in order to determine whether similar
behavior to that of Figure 7 could be derived. These SSTs were averaged over July through
October annually to capture the more active part of the tropical cyclone season in the
Atlantic (see [9]). This also provides a measure of the SST time series that is consistent
with that of seasonal ACE. Additionally, ACE correlates with the Nino 3.4 SSTs at −0.24
annually and −0.27 for the bulk of the tropical season, as described above, and these are
significant at p = 0.05. For comparison, Atlantic tropical cyclone occurrence and days for all
named storms, hurricanes, and major hurricanes correlated similarly to Niño 3.4 region
SSTs, from −0.19 to −0.28 for occurrence and −0.21 to −0.30 for days, respectively. All
these correlations are significant at p = 0.10 at the lower end of the range and −0.05 at the
higher end.

Figure 9 shows that Taken’s algorithm produced similar results to those found in
Figure 7 in that there were periods of time where the series was more stable and other
periods where the series was unstable. In Figure 9, the Takens method produced an
embedding dimension of nine and a lag of one. Thus, we can have confidence that the
behavior of ACE and the SSTs for the region typically used in seasonal tropical cyclone
prediction exhibit similar behavior.

The result in section two indicates there is variability in the ACE time series, which
correlated highly with the tropical cyclone occurrences at the time scale of the PDO, con-
firming the results of several previous researchers. The ENSO variability in tropical cyclone
numbers and, thus, ACE is well-known. This result would have implications for forecasting
seasonal tropical cyclone variability and beyond using the Lyapunov exponent and using
a method in chaos theory called empirical dynamical modeling [32]. The results here
suggest that predictability of tropical cyclone frequency out to the time scale of ENSO
(eight years as found using Equation (13)) and even beyond would be possible since pre-
dictability is possible out to the timescale of the development and lifecycle of a particular
phenomenon [43]. ENSO dominates the signal on the interannual timescale. Using simpler
time series analysis (e.g., contingency tables) [44] projected more active tropical cyclone
activity for the early 21st century. Additionally, this analysis could be performed for other
tropical cyclone activity in ocean basins.
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5. Conclusions

Using the time series for accumulated cyclone energy (ACE) for the Atlantic Ocean
Basin from 1960 to 2022, the Takens’ Algorithm and the Lyapunov Exponent were applied
to characterize the chaotic behavior of the time series. The time series for ACE was analyzed
here in order to demonstrate that the trend and interdecadal variability in ACE is consistent
with the behavior of the time series for named tropical cyclones. There is a statistically
significant correlation between these two time series and the PDO index, making the ACE
diagnostic useful for analysis here.

The Taken’s Algorithm has not been used frequently in meteorological analysis in the
past, but it is becoming more common only very recently [45]. This work demonstrates the
utility of the method in time series analysis. It was found that the time series displayed
deterministic chaos. This work also compared the results from the ACE analysis with
those of the tropical season sea surface temperatures (SSTs) for the Nino 3.4 region, and the
results were similar. Additionally, there was a statistically significant correlation between
these SST and ACE. The Lyapunov Exponent technique confirmed that ACE data can be
characterized as possessing chaos and having a predictability horizon of eight years.

This work has implications for forecasting both short-term seasonal and longer-term
interannual tropical cyclone activity in the North Atlantic, depending on the time step used.
Tropical cyclone forecasts for the near future (interannual and interdecadal) can be made
with some confidence based on this work and similar to that of earlier studies. Our group
will perform additional analysis in future research in other ocean basins.
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