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Figure 4. The a) second and b) iteration of the 12-hour Convective Precipitation shows a) that the models began to disagree on 
areas of precipitation after one time period, and b) greater disagreement between all three schemes of the MASS.
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parameters represents a better forecasting parameterization, as 
all three did not match up perfectly with the observed data. 
A study of which one works better is beyond the scope of 
this study, and has been performed by others. However, as our 
study demonstrates, model forecast performance, and model 
agreement, can be relatively poor in a weaker cyclone event. 

26–27 October 2006 Model-to-Observation Differences 
using Convective Indexes

The study above showed that there were some key differ-
ences between the forecasts of 500 hPa heights and tempera-
tures as well as the convective precipitation. The production of 
precipitation depends on a couple of ingredients including the 
stability of the atmosphere, and as such we look at the stability 
at four different points within the domain. These cities were 
chosen in order to sample a geographically wide array of points 
and capture different points in the cyclone lifecycle. We can 
examine here what kind of information a forecaster at these 
four locations would have had to consider during the time of 
this event. The percent difference for the forecast index (KI, 
TT) was calculated for each variation of the MASS model and 
the WRF model in the four observation sites. The raw values 
are displayed in Tables 2–5 and summarized in Fig. 5. Fig. 5 
contains the mean percent difference for each model-to-model 
comparison. Tables 2–5 show that occasionally there were 
percent differences above 500% since the actual forecast values 
(not shown) were relatively small. Also, due to a significant 
number of zero values, CAPE was not used in the model-to-
model comparisons. Each MASS parameterization (A,B,C) was 
compared to one another in combination, and then each MASS 
model run was compared to the WRF model. The goal was 
to determine which is more important, the difference in 
convective parameterization or the use of a different model. 

The three versions of the MASS model produced values 
that were similar to each other and generally provide the same 
interpretation regarding the probability of precipitation and its 
distribution, including the timing of the possible convection 
and its severity. The WRF model, however, produced raw higher 
values of TT than the MASS model at the downstream location 
(ILM) which indicated higher instability. But, in general the 
raw KI values were lower for the WRF. Thus, the implication 
was that the MASS (WRF) model would produce weaker 
(stronger), but more widespread (scattered) convective ele-
ments. At TOP and FWD, however, TT’s were generally lower 
for both TT and KI in the WRF. The TTs indicated the possibil-
ity of thunderstorms at TOP early in the period. The overall 
interpretation was that the WRF did not predict a strong possi-
bility of widespread convection. Again, there were more differ-
ences between the two models than there were between the 
three different convective schemes run in the MASS model. 

Topeka and Fort Worth tended to have higher percent 
differences for TT while Nashville and Wilmington had lower 
values (Fig. 5). The models had the greatest differences at 0600 
UTC 27 October (see Tables 2–5). Looking at the errors for KI, 

Table 2. Actual values of CAPE, TT, and KI for 6-h time 
periods at KTOP beginning with 1200 UTC 26 October 2006 
and ending with 0000 UTC 28 October 2006 (left), and % dif-
ference for the TT and KI for each model run. The formula is: 
| [(model1 – model 2) / model 2 ] * 100 |.

Model 
Values CAPE TT KI

Model to
Model TT KI

A 61 47 26 A to B 6.8 0
310 48 26 4.3 18.2
536 49 32 8.9 14.3

0 33 14 15.4 17.6
0 36 −1 5.3 120.0
0 34 −7 0 0
0 34 2 2.9 60

B 0 44 26 B to C 6.4 4.0
90 46 22 4.2 12.0

357 45 28 8.2 0
0 39 17 14.7 13.3
0 38 5 1.8 600.0
0 34 −7 0 0
0 35 5 0 28.6

C 9 47 25 A to C 0 4.0
254 48 25 0 4.0
536 49 28 0 14.3

0 34 15 2.9 6.7
0 34 −1 5.9 0
0 34 −7 0 0
0 35 7 2.9 71.4

WRF – 25 −14 A to WRF 46.8 153.8
– 26 −19 45.8 173.1
– 29 −16 40.8 150.0
– 29 −5 12.1 135.7
– 29 −4 19.4 300.0
– 36 7 5.9 200.0
– 35 3 2.9 50.0

B to WRF 76.0 160.9
43.5 186.4
35.6 157.1
25.6 129.4
23.7 180.0
5.9 200.0
0 40.0

C to WRF 88.0 156.0
45.8 176.0
40.8 157.1
14.7 133.3
14.7 300.0
5.9 200.0
0 57.1
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Table 3. As in Table 2, except for KFWD.

Model 
Values CAPE TT KI

Model-to-
Model TT KI

A 129 40 30 A to B 2.6 3.4
149 40 20 5.3 9.1

6 40 24 11.1 14.3
0 23 −17 0.0 41.7
0 34 3 3.0 200.0
0 39 3 2.6 200.0
0 36 2 0.0 100.0

B 128 39 29 B to C 0.0 3.6
329 40 22 5.3 10.0
60 41 21 13.9 133.3
0 25 −12 8.7 14.3
0 32 1 3.0 75.0
0 37 1 2.6 50.0
0 36 1 0.0 50.0

C 80 39 28 A to C 2.6 7.1
121 38 20 5.3 0.0

0 36 9 11.1 166.7
0 23 −14 0.0 21.4
0 33 4 3.0 25.0
0 38 2 2.6 50.0
0 36 2 0.0 0.0

WRF – 33 2 A to WRF 21.2 93.3
– 36 7 10.0 65.0
– 39 7 2.5 70.8
– 40 −1 73.9 94.1
– 36 −6 5.9 300.0
– 39 −6 0.0 300.0

0.0 300.0
B to WRF 18.2 93.1

10.0 68.2
4.9 66.7

60.0 91.7
12.5 700.0
5.4 700.0
0.0 500.0

C to WRF 18.2 92.9
5.3 65.0
8.3 22.2

73.9 92.9
9.1 250.0
2.6 400.0
0.0 300.0

Table 4. As in Table 2, except for KBNA.

Model 
Values CAPE TT KI

Model-to-
Model TT KI

A 0 41 27 A to B 5.1 8.0
56 34 24 0.0 4.3
33 40 28 5.3 7.7
0 39 32 7.1 0.0

98 44 23 2.3 28.1
215 44 34 10.0 13.3
35 35  2 2.8 86.7

B 0 39 25 B to C 4.9 7.4
2 34 23 0 4.2
0 38 26 2.6 0
0 42 32 10.5 3.2

130 43 32 0 0.0
122 40 30 13.0 16.7

7 36 15 7.7 87.5
C 0 41 27 A to C 0 0

11 34 24 0 0
5 39 26 2.6 7.7

12 38 31 2.6 3.2
322 43 32 2.3 28.1

0 46 36 4.3 5.6
217 39  8 10.3 75.0

WRF – 45 21 A to WRF 8.9 22.2
– 47 22 38.2 8.3
– 48 20 20.0 28.6
– 47 24 20.5 25.0
– 48 27 9.1 17.4
– 45 25 2.3 226.5
– 46 21 31.4 950.0

B to WRF 13.3 16.0
38.2 4.3
26.3 23.1
11.9 25.0
11.6 15.6
12.5 16.7
27.8 40.0

C to WRF 8.9 22.2
38.2 8.3
23.1 23.1
23.7 22.6
11.6 15.6
2.2 30.6

17.9 162.5

BNA had the fewest differences through the entire run, although 
the differences at ILN would be lower if the error for the first 
time period is dropped. These errors showed a large percent 
difference due to the values being very small. KFWD had 
significant differences after 00Z 27 October. Differences in the 
TT remained below 15% for all locations in the MASS-A to 

MASS-C comparison. KFWD, KBNA, and KILN showed 
differences initially but KBNA and KILN showed greater 
differences between 1800 UTC 27 October and 0000 UTC 28 
October. KILN had the fewest differences in KI for the entire 
duration after the initial time. Both KTOP and KBNA had high 
differences at 0000 UTC 28 October. The MASS-B to MASS-C 
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Figure 5. The mean percent differences for a) KTOP, b) KFWD, c) KBNA, and d) KILN versus the model-to-model comparisons 
found in Tables 2–5.

MASS-C were the best when using both TT and KI. We could 
not find this kind of comparative study in the literature for sta-
bility. Generally, studies look at differences between primary 
variables. Differences were relatively low for the entire dura-
tion of the forecast period at all locations. When either model 
was compared to B, larger differences occurred. A comparison 
to the WRF model revealed that the MASS (WRF) model 
produced stronger (weaker) TTs downstream (upstream) of the 
developing cyclone of late October 2006.

Generally, the TT had lower difference values than KI 
between each scheme of the MASS and between WRF and each 
MASS scheme. Differences between each scheme and the WRF 
were altogether poor when using KI. The initial values were 
very high and not much better at 0000 UTC 28 October. Using 
the TT, model C had the best resolution even though it had the 
highest initial differences. Finally, the differences in the model 
forecasts between convective parameterizations (intramodel 
forecasts) in this case were not as great as the model-to-model 
forecast differences (intermodel forecasts). It is not common 
practice to create forecast ensembles using different models, 
however, this work suggests that the practice may provide more 
useful information in an operational environment. 
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