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Abstract

A network of 10 rain gages reports data from the Goodwater 

Creek catchment in central Missouri. Because such a network is 

expensive to operate, it could be useful instead to use only a few gages 

and augment the observations with radar-estimated rainfall. The 

purpose of this work is to evaluate the differences between using many 

gages and using only radar with, at most, a single gage.

Additional work was done to develop an algorithm for the purpose 

of improving the techniques used to estimate rainfall from radar 

observations. Frequently a single Z-R relationship is applied to the entire 

scanning area over which a radar observes. The purpose of the 

algorithm was to evaluate the characteristics of storms observed by 

radar and to select different Z-R relationships for individual portions of 

the scanning area. In addition to developing the algorithm to 

demonstrate the concept, a comparison was done to evaluate the 

differences between using a single Z-R relationship and multiple Z-R 

relationships simultaneously in one domain.

It was found that applying a single Z-R relationship to the entire 

domain underestimated rainfall over the catchment. Applying multiple 

Z-R relationships increased the estimated rainfall accumulation in most 

instances, often overestimating the rainfall accumulation. The results 

xv



strongly suggest tha the appropriate Z-R relationship to relate 

reflectivity to rain rate, varies highly spatially and temporally, even 

within a single storm.
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Chapter 1

Introduction

Rainfall plays an important role in the water cycle by providing 

water to the surface of the Earth. Rain sustains agriculture and provides 

water to streams, which is important for aquatic life and navigation. 

Excess rainfall, however, can be quite hazardous by causing flooding, 

which is a significant threat to both life and property. Because of the 

important role of rainfall in many aspects of life, it is not only worthwhile 

to observe where rainfall has occurred and how much has fallen but also 

to forecast rainfall. The purpose of this project is twofold: to evaluate a 

method for improving observations of rainfall totals and to develop an 

algorithm that is useful in estimating rainfall from radar observations.

Observing rainfall is useful for evaluating moisture available for 

agriculture and determining how much will run off the surface into 

streams and rivers. For example, in moderate amounts, rainfall is 

necessary to grow  crops, fill reservoirs, and maintain flow in rivers for 

navigation and shipping. However, in excess, rainfall runs off the surface 

in large amounts and can cause streams and rivers to overflow their 

banks and flood. Additionally, runoff can cause transport and loss of 

sediment and chemicals. Observations of rainfall are a necessary input 
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in monitoring and forecasting soil moisture, drought, and river stages, as 

well as monitoring and modeling water quality.

Forecasting rainfall is yet another step removed from observing 

soil moisture, drought, and flow in rivers and streams and provides an 

opportunity to produce forecasts with longer lead time. Accurately 

forecasting heavy rainfall can allow for warning of floods before rainfall 

occurs instead of monitoring rainfall and warning based on observations. 

Additionally, such information is useful in agriculture to improve 

irrigation practices and the effectiveness of applying fertilizer, 

pesticides, and herbicides to crops. Effective forecasting of rainfall is 

very useful in agriculture and preparedness for flooding.

One purpose of this project is to evaluate a method to improve 

observations of rainfall. Traditionally, rainfall has been observed using 

only rain gages at the surface. Gages provide ground truth data, albeit 

with several known sources of error. Rain gages are also limited because 

they are observations at a single point and are often spaced sparsely 

and report data at infrequent intervals. Weather radars measure 

reflectivity, which can be related to rainfall rate. Radar observations 

occur much more frequently and at much higher resolutions than most 

rain gage networks can offer. Additionally, radar observations provide 

areal coverage instead of only point observations from rain gages. 

Although radar observations have many known limitations, they offer an 
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attractive alternative to measuring rainfall through traditional rain gage 

methods. One purpose of this work is to evaluate the differences in 

rainfall observations from rain gages versus rainfall estimates produced 

from radar-observed reflectivity.

Additionally, an algorithm was developed to estimate rainfall using 

multiple conversions from radar-measured reflectivity to rainfall rate 

within a single radar image. This was done because the properties of 

rainfall vary greatly in space and time, and using a single conversion 

from reflectivity to rain rate over an entire radar scanning area for a 

whole event may not produce reasonable estimates of rainfall. The 

usefulness of the algorithm was evaluated using the same cases used in 

the intercomparison between rain gages and other radar-derived rainfall 

estimates. The purpose of developing the algorithm and performing this 

second intercomparison was to evaluate the difference between using a 

single Z-R relationship and multiple Z-R relationships within a single 

radar scanning area or domain during an event.

The goal of this work was to develop two seemingly unrelated 

projects that could be related through future work. The first part of this 

document describes the efforts to evaluate the performance of 

estimating rainfall using observations from radar. Following the 

discussion of radar estimates of rainfall, an algorithm is described to 

attempt to improve the estimation of rainfall, particularly for the highest 
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intensity of rainfall during an event. Although an evaluation of algorithm 

performance is presented, the crux of the work was to develop the 

algorithm. These two projects are presented with the hope that future 

work will improve upon rainfall observations and forecasts.

1.1. Evaluation of Radar Estimates of Rainfall

Traditionally, rain gage observations have been used in many 

hydrological applications such as modeling of runoff and water quality. 

However, there are many drawbacks to using rain gages in such 

applications. Most rain gage networks report data with a very sparse 

spatial and temporal resolution. Additionally, rain gages are prone to 

sources of error such as evaporation, splashing, wind, and loss of rain 

during the tipping of buckets. Weather radar observations offer an 

alternative to estimating rainfall for hydrological purposes.

Radars measure reflectivity due to particles and objects in the 

atmosphere. Reflectivity has been related to rainfall through empirically-

derived equations. Through these equations, it is possible to estimate 

rainfall using observations from weather radars. Radar observations are 

at a much finer spatial resolution than nearly all rain gage networks and 

report data much more frequently than most rain gages. Radars are also 

not prone to the same errors that frequently occur with rain gages. 

However, there are other sources of error that arise from using radar 
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observations such as wind drift, hail, bright banding, and in determining 

an appropriate relation between reflectivity and rain rate.

The purpose of this work was to perform an intercomparison 

between rain gage observations and radar-estimated rainfall over 

central Missouri. A dense rain gage network is located within a small 

catchment and rain gage observations are reported every two minutes. 

Such a network is atypical of most rain gage networks but is useful for 

evaluating the performance of radar at estimating the characteristics of 

rainfall. A sparse rain gage network is also present around the 

catchment using data from a variety of sources including the National 

Weather Service (NWS), Federal Aviation Administration (FAA), and the 

Missouri Climate Center (MCC).

A challenge is presented in using radar observations because the 

area of interest is located approximately 130 km from the nearest radar. 

At this distance, the lowest beam is about 2,300 m above the ground. 

Because of the limited radar coverage over the rain gage network, 

errors such as bright banding and wind drift may be more pronounced 

than for areas nearer to the radar.

It is possible to attempt to correct for radar errors by calibrating 

the rainfall estimates using rain gage observations. One such product, 

the Multisensor Precipitation Estimator (MPE) is generated operationally 

and incorporates rainfall estimates from radar and satellite along with 
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observations from rain gages. However, neither the MPE nor the rainfall 

estimates derived purely from radar data may accurately estimate 

rainfall over the rain gages in question. Therefore an additional step is to 

calibrate the rainfall estimates by matching a single gage with a rainfall 

estimate and correcting any bias in the rainfall estimate.

There were several goals of this work, which when considered 

together should provide a good evaluation of the usefulness of radar in 

estimating rainfall at fine temporal and spatial scales. The following 

steps were performed in evaluating the performance of the radar 

observations:

 Compare rainfall estimates from radar-derived products 

against rain gage observations at the gages

 Interpolate rain gage observations and compare total 

rainfall accumulation over the catchment against total 

rainfall accumulation estimated by radar

 Adjust radar-derived estimates of rainfall using observations 

from a single rain gage

 Compare adjusted rainfall estimates against rain gage 

observations at gages

 Interpolate rain gage observations and compare rainfall 

total accumulation in the catchment from gages against 

adjusted rainfall estimates
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It is hoped that by performing all these steps the usefulness of 

radar estimates of rainfall can be evaluated. It is usually impractical to 

deploy a dense rain gage network such as the one used in this work. It is 

much more practical to operate a single rain gage and adjust radar-

derived rainfall estimates using that single rain gage. Therefore, this 

study not only evaluates the usefulness of radar-derived rainfall 

products but also the need for a dense rain gage network to estimate 

rainfall.

1.2. Improving Radar Estimates of Rainfall

The goal of this work was to devise an algorithm to evaluate 

characteristics of rainfall that has been detected by radar and choose an 

appropriate conversion from reflectivity to rainfall rate. The purpose of 

the algorithm was to allow the conversion to vary from one part of a 

radar image to another instead of from one time to another or one event 

to another. The goal was to demonstrate that significant variations in 

estimating rainfall can be achieved by varying the conversion within a 

radar image. Several steps were performed to evaluate the 

characteristics of the precipitation.

Many methods exist to distinguish convection from stratiform 

precipitation and identifying storm cells using radar data. Much of the 

previous work on these topics relies on arbitrarily determined reflectivity 
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thresholds. One purpose of this work was to develop an algorithm that 

objectively identifies precipitation structure and characteristics using not 

only reflectivity thresholds but also the spatial scale of structures. One 

application of identifying precipitation structures is to objectively choose 

on an appropriate conversion from reflectivity to rainfall rate at each 

pixel within a radar image. The goals of this work were to develop an 

algorithm using spectral analysis to identify different precipitation 

structures and to quantify the differences between using a single 

conversion from reflectivity to rainfall rate and an objectively 

determined conversion.

Spectral analysis has been used widely in some aspects of 

meteorology including analysis of climatic data, filtering of model 

output, and nowcasting. The Fourier Transform (FT) is a simple but well-

studied method of performing spectral analysis in signal and image 

processing. Although more recent methods of spectral analysis such as 

the Wavelet Transform are becoming more widely used, the FT and 

related transforms remain widely used in many meteorological and non-

meteorological applications. Because the FT is understood well and 

many algorithms have been developed to compute the FT rapidly even 

on very large data sets, the FT was the basis for the spectral analysis.

One goal of spectral analysis is to distinguish between convective 

and stratiform precipitation. Typically convection is characterized by 
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small but strong reflectivity maxima and therefore strong horizontal 

gradients in reflectivity. Reflectivity tends to be weaker in stratiform 

precipitation and occurs over a wider area. Spectral analysis can be 

used to isolate different frequency bands or spatial scales within a radar 

image. Stratiform precipitation should be manifested by a signal in low 

frequency and high wavelength bands. Convective precipitation should 

exhibit a signal in higher frequency and lower wavelength bands.

An individual storm cell consists of a single updraft and downdraft. 

In many instances, multiple cells exist in clusters such as multicell 

clusters and squall lines. However, these larger structures still contain 

individual convective cells within. There is frequently a hierarchy of 

convective structures with large structures such as squall lines 

containing embedded individual cells. Spectral analysis is useful in 

identifying structures of multiple scales within images. By applying 

spectral analysis to radar imagery, both larger structures such as 

clusters and lines can be identified as well as the smaller individual cells.

It is of interest to identify rotating storms, because the rotation is 

indicative of a greater degree of organization than is found in 

disorganized thunderstorms. Rotation is found in supercell 

thunderstorms and is also frequently found in linear convective systems. 

Rotation indicates a greater degree of storm organization and may be 

useful to make inferences about other storm characteristics.
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Using spectral analysis to distinguish between convective and 

stratiform precipitation, it is possible to select different relationships 

between reflectivity and rainfall rate for different portions of a radar 

image. Additionally, using properties of convective storms, including the 

presence of rotation, it is possible to further refine the choice of an 

appropriate relationship between reflectivity and rainfall rate. The goal 

of this work is to quantify the difference created from using a single 

relationship between reflectivity and rainfall rate for an entire radar 

image as opposed to selecting an appropriate relationship depending on 

properties of the image.

Therefore, the following goals were accomplished during this 

study:

 Develop an algorithm to select and apply multiple 

relationships between reflectivity and rainfall rate within a 

single radar image

 Quantify the differences between using multiple 

relationships between reflectivity and rainfall rate in a single 

radar image and using only a single relationship

Although some products of the algorithm may have other 

meteorological applications such as nowcasting, verification, and 

warning decisions, the primary purpose of this work was to produce an 

algorithm for estimating rainfall. Unlike previous algorithms for 
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estimating rainfall, the algorithm developed for this work can apply 

multiple relationships between reflectivity and rainfall rate within the 

same radar image. It is believed that by selecting multiple relationships 

between reflectivity and rainfall rate in a single radar image that better 

estimates of rainfall can be produced using radar imagery.
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Chapter 2

Background Information

This study is an intercomparison between rain gage observations 

and radar-derived estimates of rainfall. Background information on rain 

gages and radar-derived estimates of rainfall will be presented 

separately in sections. The rain gage discussion will focus on common 

errors associated with gages. Information specific to the gages used in 

this study will be described in the methodology. Background on radar 

scanning strategies will be presented with a focus on how rainfall is 

estimated and the errors associated with doing so.

2.1. Rain Gage Observations and Errors

Larson and Peck (1974) provide a good summary of rain gage 

errors and state that wind is the primary source of errors in rain gage 

observations. Increasing wind speeds also increase the gage errors. This 

is because turbulence near the gage carries raindrops or other 

hydrometeors past the rain gage that would have otherwise collected 

within the gage. Rain gage underreporting of rainfall is estimated to be 

around 10 to 20% on average and approximately 15% for a wind speed 

of 16 km h-1.
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2.2. Radar Estimation of Rainfall

Weather radars measure reflectivity (Z), which is in units of mm6 

m-3. Frequently, radar reflectivity is presented on a logarithmic scale 

instead of a linear scale, in which case reflectivity will be given in 

decibels of Z (dBZ). Reflectivity increases as scattering by objects in the 

volume of air sampled by the radar increases. This can occur either due 

to more objects in the volume of air or as the objects increase in size.

Although radars do not directly measure rainfall, empirically-

derived equations have attempted to relate reflectivity to rainfall rate. 

Such equations are known as Z-R relationships and frequently take the 

form of equation 2.1 (Marshall and Palmer, 1948).

Z=a Rb                                              (2.1)

In these equations, R is a rainfall rate, typically in units of mm hr-1. 

The constants a and b are not typically expressed with units and are 

derived semi-empirically. An extended discussion of Z-R relationships is 

given in Appendix A. Operationally, a few Z-R relationships are made 

available to operators of WSR-88D radars. A single Z-R relationship is 

applied to the entire scan area at a given time to calculate a rain rate. 

The radar operator decides on a suitable Z-R relationship to apply to the 

scans.
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The default Z-R relationship used by the WSR-88D radars for 

convective rainfall is (2.2) and is best used for deep moist convection 

during the summer.

Z=300 R1.4                                      (2.2)

Although it is best suited for convective storms during the summer, it is 

also useful for any convection that is not tropical in nature.

One of the first Z-R relationships determined was for stratiform 

precipitation. Marshall and Palmer (1948) developed the equation in 

(2.3) to relate rain rate to radar reflectivity.

 

Z = 200R1.6                                               (2.3)

This equation is still used operationally in many situations, including by 

the WSR-88D rainfall algorithm for some stratiform precipitation events. 

Later work has suggested that although this relationship is useful for 

many stratiform precipitation events, under some circumstances other 

Z-R relationships may provide better rainfall estimates. For example, 

other Z-R relationships may be substituted for stratiform precipitation 

during the cool season.

Although the Marshall-Palmer Z-R relationship is still used 

frequently for estimating rainfall from radar reflectivity, two additional Z-

R relationships for stratiform precipitation were authorized in 1999 for 

use on the WSR-88D radar network, during the cool season (Belville, 

1999). The Z-R relationship in (2.4) is best for cool season stratiform 
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precipitation west of the continental divide and may also be used for 

orographic precipitation west of the continental divide. The Z-R 

relationship in (2.5) is for cool season stratiform precipitation to the east 

of the continental divide and is also useful for orographic precipitation 

east of the continental divide.

Z=75 R2.0                                       (2.4)

Z=130 R2.0                                      (2.5)

Rainfall from tropical convection is estimated using a Z-R 

relationship in (2.6) developed by Rosenfeld et al. (1993), which is 

referred to as the Rosenfeld Tropical Z-R relationship.

Z=250 R1.2                                      (2.6)

In 1997, the Radar Operations Center (ROC) permitted radar sites to use 

this Z-R relationship (Belville, 1999).

Many errors are associated with estimating rainfall, which include 

beam blockage, anomalous propagation, beam filling, bright banding, 

and overshooting precipitation. Beam blockage occurs as the result of 

terrain partially or completely obscuring the radar beam. Anomalous 

propagation occurs as a result of strong refraction of a radar beam. 

Bright banding occurs as a result of strong scattering of the radar beam 

upon intersecting a layer of melting ice crystals. Beam filling occurs 

when only part of the volume that is being scanned scatters the beam. 

Overshooting precipitation occurs when the radar beam is completely 
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above precipitation that is occurring below. Of these errors, beam 

blockage and anomalous propagation can and are frequently corrected 

without great difficulty. The other errors, however, can adversely affect 

detection and estimation of rainfall. Bright banding causes 

overestimation of rainfall whereas beam blockage and beam filling 

cause rainfall to be underestimated. An extended description of radar 

errors can be found in Appendix B.

The WSR-88D rainfall estimation algorithm (Fulton et al., 1998) 

converts radar reflectivity detected by a single radar to a rainfall 

accumulation and performs some simple quality control operations on 

the data. The first step in the algorithm is detecting when the algorithm 

should calculate rain rates and accumulate precipitation. Precipitation 

accumulation begins when sufficient intensity and areal coverage of 

meteorological echoes are present within the scanning area of the radar.

Due to terrain around the radar, the beam may be partially or 

entirely blocked. If lower tilts are blocked by terrain, it may be useful to 

choose a higher tilt at which to observe reflectivity. A table is 

maintained for each radar to determine from which tilt it is suitable to be 

used to input reflectivity for the algorithm. The algorithm is restricted to 

using the lowest four tilts of a volume scan.

The algorithm attempts to limit underestimation of rainfall due to 

beam blockage by implementing Biscan Maximization, which chooses 
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the higher reflectivity power to use in calculating rain rate at distances 

of 180 km and farther from the radar. Due to possible overestimation 

caused by bright banding, the technique is not used for areas closer to 

the radar. Additionally, for areas where beams are partially blocked, but 

not blocked enough to discard the tilt at that location, a correction factor 

is added to the reflectivity, which depends on the amount of beam 

blockage that occurs.

Vertical and horizontal continuity of echoes is used to perform 

some quality control on the reflectivity input to the algorithm. Ground 

clutter and other isolated unreasonably high reflectivity is removed by 

testing a range bin against neighboring range bins. If horizontal 

continuity is not present, the clutter is corrected by either setting the 

reflectivity to a very small value or setting the reflectivity at the point to 

the average of the neighboring range bins. Additionally, if all reflectivity 

areas within a range decrease by 75% from one tilt to the tilt above it, 

the lower tilt is discarded to remove echoes caused by anomalous 

propagation, which will be defined in section 2.3. Although some 

schemes that quality control radar data make use of radial velocity and 

other Doppler-derived products, the operational WSR-88D rainfall 

algorithm does not.

Following the quality control of radar reflectivity, a Z-R 

relationship is applied to the reflectivity derived from the hybrid 
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scanning strategy. An appropriate Z-R relationship is determined 

subjectively by a forecaster based on the expected characteristic of the 

precipitation.

Because very strong reflectivity is likely due to hail and will 

produce unreasonably large rain rates, reflectivity is limited to a 

maximum of 53 dBZ through much of the United States with a higher 

threshold in regions near the Gulf Coast and a lower threshold in 

western parts of the United States.

Additional quality control is performed once a rain rate has been 

calculated. If, from one scan to the next, the rainfall over the entirety of 

the field changes at an unreasonable rate, the scan is discarded. This 

temporal continuity test further protects rainfall accumulations from 

contamination in addition to the earlier horizontal and vertical continuity 

tests.

2.3. Postprocessing of Rainfall Estimates

Rain rates can be integrated or summed over a period of time to 

produce rainfall accumulation products. These products include the 

gridded digital precipitation array (DPA) and polar one-hour, three-hour, 

and storm-total accumulations of rainfall.

The DPA contains a one-hour rainfall accumulation estimated by 

radar over the coverage area of the radar. Unlike the other products, 
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however, the DPA is produced on the Hydrologic Rainfall Analysis Project 

(HRAP) grid. The HRAP grid contains square cells on a polar 

stereographic projection on the world. All of these products are part of 

level III radar data and are based only on radar observations and the 

choice of adaptable parameters by the operator of each radar.

The DPA data is also referred to as Stage I data. Unlike the other 

products produced as part of level III radar data, the DPA has a precision 

of 256 levels instead of 16. The DPA is used as the basis for additional 

postprocessing of the radar data.

Two additional products are produced when Stage II data is 

generated. Stage II data takes into account observations from rain 

gages in addition to radar observations. The gage observations used in 

creating Stage II data are from Automated Surface Observing Stations 

(ASOS) and the Hydrometeorological Data System (HADS) (Lin and 

Mitchell, 2006). Rain gage observations are compared against the DPA 

to compute whether across the entire coverage area of the radar the 

radar is underestimating or overestimating precipitation. The bias that is 

calculated is for the entire coverage area of the radar. Subjective 

interpretation is performed by a forecaster to determine whether rain 

gage observations are reasonable and to correct for any errors. In 

addition to computing the bias, a second product based only on rain 
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gages is produced. The radar data, which has been adjusted for bias, is 

combined with the rain gage observations to produce Stage II data.

Stage III data uses data from multiple radars to produce a rainfall 

estimate over a larger area than the coverage of a single radar. When 

computing rainfall estimates for areas where coverage is provided by 

more than one radar, the forecaster may use a mean value or the 

maximum value. Gage data is used alone if radar data is not available 

for an area. When Stage III data is being computed, the forecaster may 

subjectively manipulate rain gage data and remove anomalous 

propagation. The forecaster can also manipulate how many observations 

are used for computing bias and whether the algorithm prefers radar or 

rain gage data for determining where rain is occurring and the intensity 

of rain.

2.4. Calibration of Rainfall Estimates

The Multisensor Precipitation Estimator (MPE) offers considerable 

improvements over Stage II and Stage III data. MPE data is now 

produced by River Forecast Centers instead of Stage II and Stage III 

data.

When producing MPE data, for areas covered by multiple radars, 

the lowest scan is chosen for which the beam is not blocked or 

contaminated by anomalous propagation. An improved method of 
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calculating mean field bias (Seo et al., 1999) is used in producing MPE 

output. Further adjustments are made at each point on the grid to adjust 

for local bias (Seo and Breidenbach, 2002). Optimal estimation is used to 

merge rain gage fields and radar derived fields (Seo, 1996). The 

climatological distribution of precipitation is also incorporated into the 

algorithm based on the Parameter-elevation Regression on Independent 

Slopes Model (PRISM).

Satellite data can be used to fill gaps in radar coverage in the 

precipitation field. Data from the Hydroestimator (Vicente et al., 1998), 

which uses infrared satellite observations to generate precipitation 

estimates, is adjusted using rain gage observations that match with the 

surrounding radar-based estimates (Kondragunta et al., 2005).

Although products resembling Stage III data, those using only rain 

gage data, radar mosaics, radar data adjusted for bias, and satellite 

data adjusted for bias are available as part of the MPE, the multisensor 

mosaic (MMOSAIC) is considered the best estimate of precipitation. 

Hourly MMOSAIC data are available for each river basin.
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Chapter 3

Methodology of Intercomparison

The purpose of this intercomparison is to evaluate the differences 

between rainfall observed by gages at the surface and radar-derived 

estimates of rainfall in the Goodwater Creek catchment. The catchment 

is located in central Missouri near Centralia, Missouri. The first sections 

of this chapter focus on the characteristics of the catchment and the 

data sets used. Following these sections, a description of each case 

examined is provided. Then the procedure for evaluating the differences 

between the data sets is presented.

3.1. Catchment

The Goodwater Creek catchment is located in central Missouri and 

drains to the northeast. The southernmost part of the catchment is 

located in northeastern Boone County and the rest of the catchment is 

in western Audrain County. Water in the creek eventually drains into the 

Mississippi River. The extents of the catchment and the topography of 

the region are shown in figure 3.1. The area of the catchment is 70 km2. 

Some of the land in the catchment is used for growing crops, including 

corn, wheat, sorghum, and soybeans. Fertilizers and herbicides used in 
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the region may have significant impacts on water quality. Figure 3.2 

shows the proximity of the Goodwater Creek catchment to nearby cities.

Figure 3.1: The outline of the Goodwater Creek catchment is shown in red 
over the topography of the region. Higher elevations are shown in brighter 
shades of gray and white. County lines are shown in yellow.
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Figure 3.2: The Goodwater Creek catchment is shaded in red with county 
boundaries in thin lines and state lines in thick lines. Selected nearby cities 
are also shown on the map.

3.2. Rain Gages

Several rain gage networks are deployed in and around the 

Goodwater Creek catchment. This section will describe the three 

networks contributing data for use in this study.
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3.2.1. Automated Surface Observing Stations

Automated Surface Observing Systems (ASOS) are deployed 

throughout the nation with many stations located at major airports. The 

network is operated by the Federal Aviation Administration (FAA) and 

the National Weather Service (NWS). ASOS stations report many data on 

an hourly basis including temperature, dewpoint, wind, sea level 

pressure, sky condition, and rainfall accumulation. Reports may be 

issued more frequently as needed under conditions of significant 

changes in weather.

Some older stations, known as Automated Weather Observation 

Systems (AWOS) are still deployed in some locations. These stations 

report less data than ASOS stations do. AWOS stations report every 20 

minutes but do not issue more frequent reports during rapidly changing 

weather conditions.

The ASOS and AWOS stations used in this study are located in 

three states. In Missouri, stations are located in or near Columbia 

(KCOU), Jefferson City (KJEF), Kirksville (KIRK), Chillicothe (KCDJ), Sedalia 

(KDMO), Osage Beach (KAIZ), Fort Leonard Wood (KTBN), Rolla/Vichy 

(KVIH), Farmington (KFAM), Saint Louis (KSTL), Saint Charles (KSET), and 

Chesterfield (KSUS). Illinois stations used are located in or near Pittsfield 

(KPPQ), Alton (KALN), and Quincy (KUIN). One station, Keokuk (KEOK), is 
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located in extreme southeastern Iowa. This network shall be referred to 

as the ASOS network.

ASOS and AWOS stations use tipping bucket gages to measure 

rainfall. Many stations also have a precipitation discriminator to 

distinguish between different types of precipitation such as rain, 

freezing rain, ice pellets, and snow.

3.2.2. Missouri Climate Center Stations

The Missouri Climate Center (MCC) operates a number of stations 

throughout Missouri. These stations report data every five minutes. 

However, data is archived on an hourly basis. Therefore when accessing 

past data such as for this study, only hourly data are available, even 

though the stations report every five minutes. MCC stations report 

temperature, dewpoint, wind, precipitation, and other data that vary 

from one station to another. 

The MCC stations used in this study were located in or near 

Linneus, Brunswick, Auxvasse, Green Ridge, Versailles, Cook Station, 

Novelty, Monroe City, and Columbia. There are two MCC stations in the 

Columbia area. One station is located at Sanborn Field, on the University 

of Missouri campus. The other station is located at South Farm, just 

outside the southeastern edge of Columbia. This shall be referred to as 
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the MCC network. Figure 3.3 shows all the gages used in this study with 

an emphasis on the ASOS and MCC networks.

Figure 3.3: The Goodwater Creek catchment is shaded in red with county 
boundaries in thin lines and state lines in thick lines. All the gages used in 
this study are shown. However, due to the size of the image, several gages 
within the catchment that are part of the USDA-ARS network are not labeled.
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3.2.3. USDA-ARS Stations

The Cropping Systems and Water Quality Research Unit of the 

United States Department of Agriculture (USDA) – Agriculture Research 

Service (ARS) operates ten rain gages within the Goodwater Creek 

catchment. These gages report data every two minutes. No other 

meteorological data are recorded at these stations. This network shall 

be referred to as the USDA-ARS network. Figure 3.4 shows the gages in 

the USDA-ARS network. The rain gages are Belfort 20-cm weighing rain 

gages that automatically record data every two minutes (Sadler et al., 

2006). Because the gages are weighing gages instead of tipping bucket 

gages, they are less prone to underestimating rainfall during periods of 

heavy rainfall.
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Figure 3.4: The Goodwater Creek catchment is shaded in red with county 
boundaries in black lines. Gages in the USDA-ARS network are shown.

Actual data from the USDA-ARS network were provided in ten 

minute intervals for this study. These data were summed over the 

period of an hour to produce hourly accumulations at each gage. The 

hourly accumulations from the USDA-ARS network were then used in the 

intercomparison.
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3.3. Radar-Derived Observations

Two data sets, using primarily radar-derived rainfall rates and 

accumulations, are used in this study. One data set is derived from a 

national composite of level III radar reflectivity. The other data set is 

MPE data.

3.3.1. Rainfall Derived from Level III Data

National composites of level III data are available from the Iowa 

Environmental Mesonet (IEM) at Iowa State University. Data are 

composited from reflectivity observed by WSR-88D radars, and 

composites are available every five minutes. The composites are 

reflectivity data with a precision of 5 dBZ. The composites are provided 

as images that are easily georeferenced for use in Geospatial 

Information Systems (GIS) software. Data for each of the cases in this 

project were at a resolution of 2 km.

A convective Z-R relationship was applied to the data to produce a 

rainfall rate from reflectivity. Reflectivity was capped at 53 dBZ, which is 

consistent with the hail cap used in the operational WSR-88D rainfall 

algorithm. Because composites are available every five minutes, and the 

Z-R relationship produces rainfall rates in units of mm hr-1, a mean of 

rainfall rates from 12 consecutive composites was computed to produce 

an average rainfall rate for the hour, or a rainfall accumulation. Because 
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of the coarse precision of level III data, using data from a single 

composite would produce unrealistic discontinuities in rainfall rate and 

accumulation. However, the mean over an hour produces a smoothed 

and more realistic rainfall field. For the purposes of this paper, data 

derived in this way shall be referred to as convective radar-derived 

rainfall data.

3.3.2. MPE Data

MPE data were downloaded and ingested into GIS software. MPE 

data are available on an hourly basis. Unlike the convective radar-

derived rainfall data, these data are clipped to the boundary of a River 

Forecast Center (RFC). Because the Goodwater Creek Catchment drains 

into the Mississippi River and is not part of the Missouri River Basin, the 

appropriate RFC is the North Central RFC (NCRFC). MMOSAIC data from 

the NCRFC were used in this study. The spatial resolution of these are 

approximately 4 km.

MPE data is produced from WSR-88D radar products, rain gage 

observations, and satellite imagery. Radar estimates of rainfall are 

calibrated using rain gage observations. Satellite estimates of rainfall, 

which are also calibrated using observations from rain gages, are used 

to fill in gaps where radar coverage is absent. Rainfall estimates are 

combined with rain gage output and mosaicked together to produce a 
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composite over the area of a river forecast center. Subjective quality 

control is performed during the process, particularly in evaluating the 

performance of rain gage observations.

3.4. Cases

Because some data sets were not available prior to 2004 and 

some data sets were unavailable after 2004, only cases from 2004 were 

chosen. Additionally, cases chosen were high-intensity convective 

rainfall cases ,to simplify the choice of a Z-R relationship and because 

these cases were of the greatest interest. Eight cases from 2004 were 

chosen and each is described briefly in this section. Because some data 

are available only at a temporal resolution of one hour, such as the MPE 

data, each case includes one hour of a rainfall event. Times given of 

rainfall events are at the end of the hour, when stations such as ASOS 

stations are reporting hourly rainfall accumulation. Radar imagery from 

the middle of each one-hour event can be found in Appendix D.

3.4.1. May 19, 2004 at 07 UTC

At 06 UTC, a complex of thunderstorms was oriented nearly east 

to west from central Missouri to slightly north of Saint Louis, Missouri. 

The convection was quasi-linear with embedded convective cells. Small 

amounts of stratiform precipitation were also evident in the vicinity of 
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the storms. The general motion of the cells in the complex of storms was 

to the east-southeast. Additional thunderstorms were evident over west 

central Missouri, although not organized in a quasi-linear fashion nor 

part of the complex over eastern and central Missouri. Rain gage 

observations from the USDA-ARS network are shown in table 3.1.

Rain Gage Rainfall (mm)

MOGC0116 26.9

MOGC0125 26.2

MOGC0126 32.8

MOGC0127 5.3

MOGC0132 10.9

MOGC0134 8.4

MOGC0138 23.9

MOGC0139 25.1

MOGC0201 10.9

MOGC0203 9.4
Table 3.1: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to May 19, 2004 at 07 UTC.

3.4.2. July 6, 2004 at 13 UTC

At 12 UTC, two large complexes of thunderstorms were ongoing 

with other convective activity occurring as well. One complex became 

quasi-linear in structure between 12 UTC and 13 UTC, oriented from 

northwest to southeast, and was slightly northeast of Columbia, Missouri 

at the beginning of the hour. A second complex was in Illinois, just east 

of Hannibal, Missouri. A smaller thunderstorm cell was slightly south of 

Monroe City, Missouri, between the two thunderstorm complexes. 
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Additional, weaker, thunderstorm activity extended northwest from the 

westernmost complex of thunderstorms into southwest Iowa. Stratiform 

precipitation was occurring between the two thunderstorm complexes, 

in addition to the convective cell near Monroe City. More stratiform 

precipitation was occurring to the west of the western complex to the 

south of the weak convection extending into southwest Iowa. The 

general motion of the thunderstorms was to the east-northeast during 

the period of interest. Rain gage observations from the USDA-ARS 

network are shown in table 3.2.

Rain Gage Rainfall (mm)

MOGC0116 22.2

MOGC0125 19.9

MOGC0126 13.8

MOGC0127 34.7

MOGC0132 23.0

MOGC0134 27.4

MOGC0138 19.8

MOGC0139 16.8

MOGC0201 26.9

MOGC0203 27.0
Table 3.2: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to July 6, 2004 at 13 UTC.

3.4.3. August 4, 2004 at 08 UTC

At 07 UTC, a large complex of thunderstorms was ongoing over 

much of the northern half of Missouri. A line of thunderstorms over 

northern central Illinois was oriented from northeast to southwest with a 
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large region of stratiform precipitation observed to the north and west of 

the line. Although the line was broken through much of west central 

Illinois, the complex extended into northern Missouri where a line was 

evident at the beginning of the period from near Monroe City, Missouri 

to near Boonville, Missouri. Additional thunderstorms were occurring to 

the north and west of the line and extending as far west as into the 

Kansas City, Missouri area. The general track of individual cells within 

the complex was to the east while the complex as a whole propagated 

to the southeast. Rain gage observations from the USDA-ARS network 

are shown in table 3.3.

Rain Gage Rainfall (mm)

MOGC0116 27.4

MOGC0125 27.7

MOGC0126 34.3

MOGC0127 29.0

MOGC0132 28.4

MOGC0134 24.4

MOGC0138 31.0

MOGC0139 29.7

MOGC0201 24.9

MOGC0203 25.9
Table 3.3: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to August 4, 2004 at 08 UTC.

3.4.4. August 4, 2004 at 09 UTC

As a continuation from the previous hour, a large complex of 

thunderstorms over Missouri and Illinois continued to move to the 
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southeast. Many of the thunderstorms over far northern Missouri 

weakened by the start of this period. The leading edge of thunderstorm 

activity across Missouri was generally to the south of the catchment and 

oriented east to west near Columbia, Missouri. Much of the precipitation 

over the catchment during the time period appeared to be stratiform in 

nature. During this period, the thunderstorms over Missouri appeared to 

continue to weaken. Supporting the qualitative observations of 

stratiform precipitation over the catchment and a general weakening of 

the storms during this period are lower rainfall totals in the catchment 

during this period as compared to the previous period. Rain gage 

observations from the USDA-ARS network are shown in table 3.4.

Rain Gage Rainfall (mm)

MOGC0116 22.0

MOGC0125 16.7

MOGC0126 14.4

MOGC0127 21.5

MOGC0132 23.1

MOGC0134 26.9

MOGC0138 15.1

MOGC0139 17.1

MOGC0201 30.3

MOGC0203 25.8
Table 3.4: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to August 4, 2004 at 09 UTC.
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3.4.5. August 26, 2004 at 06 UTC

Thunderstorm activity in Missouri during this time period was very 

isolated in nature. Greater areal coverage of thunderstorms was evident 

in west central and southwest Illinois with a line of thunderstorms 

extending from northwest to southeast just east of the Mississippi River. 

Thunderstorms developed and increased in areal coverage over 

southeast Iowa and northwest Illinois during the time period. Isolated 

thunderstorm activity in extreme northeast Missouri also weakened 

during the time period. Precipitation in the catchment of interest was 

due to a complex of thunderstorms that extended from near Fayette, 

Missouri to near Perry, Missouri. The general motion of the thunderstorm 

complex over central Missouri was to the east-northeast. Rain gage 

observations from the USDA-ARS network are shown in table 3.5.

Rain Gage Rainfall (mm)

MOGC0116 65.5

MOGC0125 71.6

MOGC0126 67.1

MOGC0127 25.9

MOGC0132 57.7

MOGC0134 36.8

MOGC0138 73.2

MOGC0139 60.7

MOGC0201 38.5

MOGC0203 44.7
Table 3.5: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to August 26, 2004 at 06 UTC.
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3.4.6. August 26, 2004 at 07 UTC

This was a continuation of the previous hour in which the complex 

of thunderstorms over the catchment at the beginning of the period 

tracked generally to the east and exhibited a weakening trend. 

Additional, very isolated, thunderstorms began to develop to the north 

and west during the time period over portions of north central Missouri. 

The weakening trend of the thunderstorms and their movement away 

from the catchment was supported by lower rainfall totals observed in 

the catchment during this hour than in the previous hour. Rain gage 

observations from the USDA-ARS network are shown in table 3.6.

Rain Gage Rainfall (mm)

MOGC0116 12.0

MOGC0125 6.9

MOGC0126 5.6

MOGC0127 19.1

MOGC0132 7.7

MOGC0134 19.6

MOGC0138 5.1

MOGC0139 4.1

MOGC0201 20.7

MOGC0203 14.3
Table 3.6: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to August 26, 2004 at 07 UTC.

3.4.7. August 27, 2004 at 18 UTC

At the start of the period, an east to west oriented line of showers 

and thunderstorms was present from near Novelty, Missouri through 
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central Illinois. This complex exhibited a weakening trend during the 

period of interest. Thunderstorms were developing over portions of 

central Missouri with a cluster of cells positioned from near Harrisburg, 

Missouri to near Vandalia, Missouri. Additional thunderstorms were 

developing and moving northeast through parts of Moniteau and Cooper 

counties in central Missouri during the time period. The cluster from 

Harrisburg to Vandalia weakened during the period and tracked to the 

northeast. Rain gage observations from the USDA-ARS network are 

shown in table 3.7.

Rain Gage Rainfall (mm)

MOGC0116 18.9

MOGC0125 23.9

MOGC0126 23.4

MOGC0127 1.3

MOGC0132 14.9

MOGC0134 6.5

MOGC0138 23.1

MOGC0139 29.5

MOGC0201 3.3

MOGC0203 9.9
Table 3.7: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to August 27, 2004 at 18 UTC.

3.4.8. October 18, 2004 at 10 UTC

At the beginning of the event, a quasi-linear cluster of 

thunderstorms extended from central Missouri through central Illinois 

and into southern Indiana. A broad area of stratiform precipitation was 
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occurring north of the line of storms. During the event, storms were 

weakening over central Missouri while some of the storms were 

intensifying over eastern Missouri and southern Illinois. At the start of 

the event, precipitation was already ongoing over the catchment. 

Throughout the event, storms moved out of the area. Rain gage 

observations from the USDA-ARS network are shown in table 3.8.

Rain Gage Rainfall (mm)

MOGC0116 10.3

MOGC0125 8.1

MOGC0126 5.1

MOGC0127 19.9

MOGC0132 12.0

MOGC0134 15.1

MOGC0138 5.8

MOGC0139 6.3

MOGC0201 18.2

MOGC0203 11.8
Table 3.8: Rainfall observed at rain gages within the Goodwater Creek 
catchment for the hour leading up to October 18, 2004 at 10 UTC.

3.5. Procedure

The initial work focused on an intercomparison between four data 

sets, which are the combination of the ASOS and MCC networks, the 

combination of the ASOS, MCC, and USDA-ARS networks, the convective 

radar-derived rainfall data, and the MPE data. Later work focused on 

adjusting the output of the convective radar-derived rainfall data and 

the MPE data to match rain gage observations.
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Processing of spatial data was done using the ArcInfo GIS 

software. Some calculations of data were done using Microsoft Excel. 

Additional software, provided by the National Oceanic and Atmospheric 

Administration (NOAA), for decoding the native format on which MPE 

data are delivered to produce text files with the data.

3.5.1. Ingesting Data

Rain gage data was available from three networks, all of which 

reported at least as frequently as on an hourly basis. Rainfall 

accumulations from networks that reported more frequently, such as the 

MCC network and the USDA-ARS network were summed over the period 

of an hour to produce an hourly accumulation. The data from the MCC 

network was already summed when it was acquired from the archive. 

However, the USDA-ARS network data was summed to create hourly 

rainfall accumulations as part of this procedure. This work was done in 

Microsoft Excel and spreadsheets were produced as output, which were 

then imported into ArcInfo by using ArcCatalog. Additional processing 

was performed to create shapefiles from the data that was imported 

from Excel.

National composites of reflectivity were available from the IEM 

and were downloaded. Composites were available every five minutes 

and so 12 composites were downloaded to cover events that were one 
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hour long. These composites were georeferenced using ArcCatalog for 

use in ArcInfo. In the composites, data was not in units of dBZ but was 

instead 8-bit numbers assigned to colors that were frequently used for 

reflectivity color scales in radar imagery. A conversion was performed to 

convert from the raw numbers used in the file format to units of dBZ. An 

additional conversion was performed to produce reflectivity (Z) instead 

of decibels of reflectivity (dBZ). Following these conversions, a 

convective Z-R relationship was applied to calculate instantaneous 

rainfall rates. A flowchart of this process, generated in the ArcInfo Model 

Builder, is shown in figure 3.5. Figure 3.6 references figure 3.5 and 

includes the step of georeferencing the data. Using the cell statistics 

tool, the 12 instantaneous rainfall rates were averaged to produce an 

hourly accumulation of rainfall. This processing uses the output of the 

process shown in figure 3.6.

42



Figure 3.5: A flowchart of the process for ingesting a single radar composite 
to produce a rainfall rate from reflectivity.
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Figure 3.6: A flowchart for the process of ingesting a single radar composite, 
including the step of georeferencing the data.

MPE data were downloaded from NOAA and was available in the 

XMRG format. This format is not readily ingested by ArcGIS and 

therefore some conversions needed to be performed prior to ingesting 

and manipulating the data. Data was converted from the XMRG format 

to a plain text format using the xmrgtoasc tool available from NOAA. 

Then using the ASCII to GRID tool in ArcInfo, the text data was ingested 

into a raster GRID file.

3.5.2. Interpolation of Data

The data used in this intercomparison were very heterogeneous. 

Rain gage observations are observations at a single point whereas radar 

data consist of observations from many points. The rain gage data were 

best represented in a vector format in GIS whereas the radar data were 

best represented in a raster format. However, for some of the 

intercomparisons, a common format was needed. Some of the tools 
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needed for the comparisons, such as the flow accumulation tool, operate 

only on raster data. Therefore it was useful to convert all the data sets 

to raster data.

Although many methods exist for interpolating point data to 

produce gridded data, kriging was chosen for this study. Kriging weights 

observations based on their distance from the grid point and on the 

distance between observations. A simpler interpolation scheme may 

assimilate redundant information if many observations are closely 

spaced together in an area while other areas have relatively sparse 

observations. Kriging not only produces gridded estimates of data but 

also measures of the accuracy of the interpolation. Although grids 

created by kriging may not match actual observations, the range of 

interpolated values is not constrained to the range of observed values. 

An extended discussion of other methods for generating grids from point 

observations can be found in Appendix C.

Point data were interpolated to a grid spacing of 100m. 

Additionally, the radar-based raster data sets were upsampled to a grid 

spacing of 100m using the resample tool in ArcInfo. This was done for 

the purpose of creating a high-resolution grid with a consistent 

resolution for each dataset. The high-resolution grids were then clipped 

to the boundaries of the catchment. The process of interpolating the rain 

gage observations is shown in figure 3.7. Figures 3.8 and 3.9 show the 
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processes for upsampling and clipping convective radar-derived rainfall 

and MPE data, respectively.

Figure 3.7: This figure shows the process of interpolating rain gage 
observations and clipping to the boundaries of the catchment. The input is in 
inches and the output is in millimeters.
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Figure 3.8: This figure shows a flowchart for upsampling and clipping 
convective radar-derived rainfall data.
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Figure 3.9: This figure shows the process of importing MPE data from a text 
file, upsampling it, and clipping it to the catchment boundaries. Part of this 
process is also described in Section 3.5.1.

3.5.3. Methods of Intercomparing Observations

Many methods exist for intercomparing observations from rain 

gages and radar-derived rainfall estimates. A few parameters were 
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compared in this study and will be described here. One simple method 

of comparing rain gage and radar-derived projects is to merely compare 

the radar-derived estimate of rainfall at the point were a gage is located. 

This was one method used in this intercomparison. However, it was also 

useful to examine the maximum and minimum rainfall accumulation 

reported in the catchment, particularly because it is possible for maxima 

and minima to be located between gages where radar may still detect 

them. Additionally the flow accumulation tool available in ArcInfo was 

used. The flow accumulation at the outlet of the catchment is the total 

amount of rainfall that fell throughout the catchment. For the remainder 

of this project, the total amount of rainfall in the catchment shall be 

referred to as catchment total rainfall. These three methods of 

comparing different rainfall observations were used in evaluating the 

output of different data sets.

3.5.4. Intercomparison of Data Sets

Four raster data sets were created during the course of this part of 

the study. One was created using data from the ASOS and MCC 

networks. Another data set was created using data from the ASOS, MCC, 

and USDA-ARS networks. A third data set consisted of convective radar-

derived rainfall. The fourth data set was MPE data.
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Rain gage observations from the USDA-ARS network were 

compared against the point rainfall estimate in each raster data set. 

Additionally, the maximum and minimum rainfall in each raster data set 

was found and compared against the maximum and minimum rainfall 

observed by the USDA-ARS network. Additionally, the flow accumulation 

tool was used to calculate the total amount of rain over the entire 

catchment in each raster. Comparisons were done for each of the eight 

cases and then aggregate results were calculated as well.

3.5.5. Calibrating Radar-Derived Products

Because the work described in section 3.5.4 showed that both the 

convective radar-derived rainfall estimate and the MPE both 

underestimated rainfall over the catchment, additional work was done to 

attempt to calibrate the rainfall estimates. Additionally, the data set 

using only data from the ASOS and MCC networks was found to be 

unsuitable for this study and was not used beyond the work done in 

section 3.5.4. The question that was examined in this portion of the 

study was whether radar-derived products could be calibrated using only 

a single gage in the catchment to produce reasonable results or if the 

entire USDA-ARS rain gage network is needed to accurately represent 

the spatial characteristics of rainfall in the catchment.
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A single gage, MOGC0125, was selected for calculating the bias of 

the radar-derived estimates and a correction factor. The gage is 

centrally located within the catchment, which is why it was chosen for 

the determining a bias and correction factor for the entire catchment. 

The bias was the rainfall estimated at the gage location divided by the 

observed rainfall at the gage. The correction factor was the observed 

rainfall at the gage divided by the radar-derived estimate of rainfall at 

the gage location. The radar-derived estimate of rainfall was multiplied 

by the correction factor over the entire catchment. Therefore, the entire 

raster was adjusted based on the correction factor determined at 

MOGC0125. Calibration was done for both the convective radar-derived 

rainfall data and the MPE data.

3.5.6. Intercomparing Calibrated Radar-Derived Products

The computations described in section 3.5.4 were done for the 

calibrated radar-derived rainfall products using the calibrated convective 

radar-derived rainfall data and the calibrated MPE data. As with the 

earlier data sets, both calibrated radar-derived data sets were compared 

against the observed rainfall in the USDA-ARS rain gage network.
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Chapter 4

Results of Intercomparison

This chapter presents and analyzes results of the intercomparison 

as described in Chapter 3. As stated in the previous chapter, there are 

two sections to the intercomparison. Therefore, there will be two 

sections to this chapter. The first section will focus on analyzing results 

of the intercomparison between interpolating data from the ASOS and 

MCC networks, interpolating data from the ASOS, MCC, and USDA-ARS 

networks, convective radar-derived rainfall estimates, and MPE data. 

The second section will focus on the results of calibrating convective 

radar-derived rainfall estimates and calibrating MPE data.

4.1. Intercomparison of Unadjusted Data

The results from intercomparing the unadjusted rainfall data will 

be presented in this section. Although rain gage errors do occur, 

observations from gages were treated as ground truth. The differences 

of the interpolated rainfall products and radar-derived rainfall products 

are calculated against the ground truth.

Each rain gage was matched up against a grid point in each of 

four spatial representations of the rainfall during an event. A percent 

difference was calculated for each of the spatial representations by 
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dividing the rainfall in the spatial representation at the grid point by the 

observed rainfall at the gage. A ratio over one indicates that the spatial 

representation is overestimating the rainfall. Conversely, a result under 

one indicates that the spatial representation is underestimating the 

rainfall. The mean ratio for the interpolations of gage products against 

all of the gages in an event is shown in Table 4.1. Table 4.2 shows the 

mean ratio of radar-derived products against all of the gages in an 

event.

Event ASOS/MCC/USDA-ARS 
Interp. Difference

ASOS/MCC Interp. 
Difference

May 19, 2004 at 07 UTC 1.05 0.32

July 6, 2004 at 13 UTC 1.00 0.05

August 4, 2004 at 08 UTC 1.01 0.21

August 4, 2004 at 09 UTC 1.00 0.35

August 26, 2004 at 06 UTC 1.00 0.00

August 26, 2004 at 07 UTC 1.28 0.03

August 27, 2004 at 18 UTC 1.54 0.19

October 18, 2004 at 10 UTC 1.17 0.15
Table 4.1: The ratio of rainfall estimates from interpolating gages from 
various networks to actual gage observations is shown.
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Event Convective Radar-
Derived Rainfall Bias

MPE Bias

May 19, 2004 at 07 UTC 0.46 0.46

July 6, 2004 at 13 UTC 0.83 0.61

August 4, 2004 at 08 UTC 1.05 0.71

August 4, 2004 at 09 UTC 0.62 0.53

August 26, 2004 at 06 UTC 0.82 0.64

August 26, 2004 at 07 UTC 1.25 1.79

August 27, 2004 at 18 UTC 0.93 0.36

October 18, 2004 at 10 UTC 0.83 1.19
Table 4.2: The ratio of radar-derived rainfall estimates to actual gage 
observations is shown.

It is notable that there is a high degree of variability from case to 

case in the ratio of the estimated rainfall to observed rainfall for most of 

the interpolations. Although one would expect the interpolation from the 

USDA-ARS, MCC, and ASOS networks to perform the best and nearly 

match the actual observations, this is not always the case. It is also clear 

that merely interpolating the MCC and ASOS networks greatly 

underestimates the rainfall in each case. Although not shown, there 

were many cases in which interpolating observations from the MCC and 

ASOS networks did not result in any variability in the interpolated rainfall 

across the catchment. However, as shown when describing the cases in 

Section 3.4, there is almost always strong variability in rainfall across 

the catchment. For these reasons, it is already apparent that merely 

interpolating the MCC and ASOS networks is unsuitable for estimating 

rainfall in the catchment. Not only is the rainfall underestimated, but the 

spatial variability of rainfall in the catchment is not represented.
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Although both the MPE and the convective radar-derived rainfall 

underestimated rainfall in a majority of the cases, there is some 

difference between the two that is evident. The MPE underestimated 

rainfall by a greater amount than the convective radar-derived rainfall 

did in most cases. Additionally, there is a greater degree of variability in 

the bias of the MPE as compared with the convective radar-derived 

rainfall.

Event Conv. Radar-Derived 
Rainfall Ratio Range

MPE Ratio Range

May 19, 2004 at 07 UTC 0.49 0.59

July 6, 2004 at 13 UTC 0.62 0.43

August 4, 2004 at 08 UTC 0.65 0.4

August 4, 2004 at 09 UTC 1.13 0.46

August 26, 2004 at 06 UTC 0.49 0.62

August 26, 2004 at 07 UTC 1.92 1.99

August 27, 2004 at 18 UTC 1.24 0.62

October 18, 2004 at 10 UTC 0.7 0.92
Table 4.3: The range of ratios of radar-derived rainfall estimates to actual 
gage observations is shown.

Table 4.3 shows the range in biases of radar-derived rainfall 

estimates against actual gage observations. The convective radar-

derived rainfall biases had a greater mean range than did the MPE 

biases over these eight cases. However, in four cases, the MPE bias 

range was actually larger than the convective radar-derived rainfall. It is 

clear, however, that there is a strong variability in the performance of 

radar-derived products from event to event. Some of the thunderstorms 

actually spanned more than one event. By comparing the two events 
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resulting from a single thunderstorm, it is clear that the performance of 

radar-derived products may change greatly during the duration of a 

single thunderstorm.

The statistics presented above were aggregate statistics for a 

single event. However, comparing radar-derived rainfall estimates 

against individual gage observations also yields some notable results. 

For example, the mean ratio of estimated rainfall using the convective 

radar-derived rainfall estimate to gage-observed rainfall for all events 

was 0.85, compared to 0.79 for the ratio of MPE estimated rainfall to 

gage observations. However, the median ratio was 0.83 for the 

convective radar-derived rainfall estimate and 0.65 for the MPE. This 

suggests that for most gages, the convective radar-derived rainfall 

estimate more closely matches the gage observations. The mean of the 

MPE ratio is being skewed upward, likely due to some outliers. This is 

also indicated by the standard deviation of the convective radar-derived 

ratios of 0.37 and the standard deviation of the MPE ratios of 0.53. The 

stretching of the distribution is evident at both ends. The maximum ratio 

of the convective radar-derived rainfall estimate is 2.47 and the 

minimum is 0.22. However, for the MPE, the maximum ratio is 3.18 and 

the minimum is 0.07.
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Percentile 10 20 30 40 50 60 70 80 90

Convective Radar-Derived 
Rainfall Ratio

0.44 0.56 0.66 0.74 0.83 0.90 1.00 1.14 1.23

MPE Ratio 0.33 0.42 0.53 0.57 0.65 0.71 0.84 0.98 1.43
Table 4.4: The distribution of the ratios of radar-derived rainfall estimates to 
gage observations is shown in this table.

Similar trends are also represented by further examining the 

distribution of ratios. The median of the convective radar-derived rainfall 

ratio is at the 70th percentile whereas the median of the MPE ratio is 

approximately at the 80th percentile. The MPE underestimated rainfall to 

a greater extent than the convective radar-derived rainfall in most 

cases. However, the distribution clearly indicates the presence of 

outliers in the distribution of the MPE ratios above the 80th percentile. 

This confirms the previous analysis that the distribution of the ratios of 

MPE estimates is stretched to a greater extent than the distribution of 

ratios of convective radar-derived rainfall estimates.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

Conv. Radar-
Derived 
Rainfall Min. 
(mm)

Conv. Radar-
Derived 
Rainfall Max. 
(mm)

May 19, 2004 at 07 
UTC

5.3 32.8 2.4 18.3

July 6, 2004 at 13 
UTC

13.8 34.7 13.3 24.5

August 4, 2004 at 
08 UTC

24.4 34.3 16.5 37.0

August 4, 2004 at 
09 UTC

14.4 30.3 5.7 23.9

August 26, 2004 at 
06 UTC

26.0 73.2 29.4 59.1

August 26, 2004 at 
07 UTC

4.1 20.7 1.5 32.7

August 27, 2004 at 
18 UTC

1.3 29.5 1.1 28.5

October 18, 2004 at 
10 UTC

5.1 19.9 3.4 24.5

Table 4.5: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the convective radar-derived rainfall.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

MPE Min. 
(mm)

MPE Max. 
(mm)

May 19, 2004 at 07 
UTC

5.3 32.8 3.8 13.4

July 6, 2004 at 13 
UTC

13.8 34.7 10.1 14.5

August 4, 2004 at 
08 UTC

24.4 34.3 14.5 26.1

August 4, 2004 at 
09 UTC

14.4 30.3 9.2 13.8

August 26, 2004 at 
06 UTC

26.0 73.2 17.6 53.1

August 26, 2004 at 
07 UTC

4.1 20.7 2.4 39.5

August 27, 2004 at 
18 UTC

1.3 29.5 0.7 16.3

October 18, 2004 at 
10 UTC

5.1 19.9 3.2 16.9

Table 4.6: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the MPE.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

ASOS/MCC/U
SDA-ARS 
Min. (mm)

ASOS/MCC/US
DA-ARS Max. 
(mm)

May 19, 2004 at 07 
UTC

5.3 32.8 8.9 27.1

July 6, 2004 at 13 
UTC

13.8 34.7 13.8 34.5

August 4, 2004 at 
08 UTC

24.4 34.3 24.4 34.3

August 4, 2004 at 
09 UTC

14.4 30.3 14.1 30.1

August 26, 2004 at 
06 UTC

26.0 73.2 26.1 73.1

August 26, 2004 at 
07 UTC

4.1 20.7 5.9 17.6

August 27, 2004 at 
18 UTC

1.3 29.5 7.1 23.8

October 18, 2004 at 
10 UTC

5.1 19.9 7.1 15.5

Table 4.7: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the interpolation of data from the 
ASOS, MCC, and USDA-ARS networks.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

ASOS/MCC 
Min. (mm)

ASOS/MCC 
Max. (mm)

May 19, 2004 at 07 
UTC

5.3 32.8 4.0 4.0

July 6, 2004 at 13 
UTC

13.8 34.7 0.2 1.8

August 4, 2004 at 
08 UTC

24.4 34.3 5.5 6.4

August 4, 2004 at 
09 UTC

14.4 30.3 6.4 7.4

August 26, 2004 at 
06 UTC

26.0 73.2 0.1 0.1

August 26, 2004 at 
07 UTC

4.1 20.7 0.2 0.2

August 27, 2004 at 
18 UTC

1.3 29.5 1.2 1.2

October 18, 2004 at 
10 UTC

5.1 19.9 0.5 1.9

Table 4.8: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the interpolation of data from the ASOS 
and MCC networks.

Shown in Tables 4.5 to 4.8 are the minimum and maximum rainfall 

totals estimated by each spatial product as compared against those 

observed by gages in the catchment. It is clear that merely using the 

ASOS and MCC networks to interpolate rainfall within the catchment is 

unsuitable and the rainfall is greatly underestimated. As with previous 

results, both the MPE and the convective radar-derived rainfall products 

appear to underestimate the rainfall in the catchment. The best 

performance was achieved by interpolating the ASOS, MCC, and USDA-

ARS networks. The average ratio between estimated rainfall in the 

interpolation and actual gage observations of the maximum rainfall for 

this interpolation is 91% and is 176% for the minimum rainfall. However, 
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this is greatly exaggerated due to the August 27, 2004 at 18 UTC case in 

which the minimum rainfall was overestimated by a factor of five in the 

catchment. It is also noted that in this interpolation, the maximum 

rainfall in the catchment is frequently slightly underestimated and the 

minimum rainfall in the catchment is frequently overestimated slightly. 

This is likely due to smoothing in the interpolation, but is not believed to 

introduce a bias in determining the volume of water over the entirety of 

the catchment.

Case MPE Vol. Conv. Radar-
derived Vol.

ASOS/MCC 
Vol.

ASOS/MCC/US
DA-ARS Vol.

May 19, 2004 at 07 
UTC

56174.3 60859.9 30167.3 151761

July 6, 2004 at 13 
UTC

100167 134374 9357.51 161696

August 4, 2004 at 
08 UTC

158758 213879 44441.9 218221

August 4, 2004 at 
09 UTC

83724.3 97446.9 52848.8 146941

August 26, 2004 at 
06 UTC

278723 339608 381.86 455055

August 26, 2004 at 
07 UTC

114860 88813.5 1527.45 80934.9

August 27, 2004 at 
18 UTC

62128.9 122232 8782.87 127190

October 18, 2004 at 
10 UTC

73867.2 61855.1 10960.5 78513.3

Table 4.9: Shown is the volume of water accumulated in the catchment in 
units of cubic meters during the duration of the event estimated from the 
four different data sets.

Table 4.9 shows the total volume of water accumulated in the 

catchment during the duration of the event as estimated by each 

interpolation. Because the best interpolation was deemed to be the 
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interpolation using gage observations from the ASOS, MCC, and USDA-

ARS gage networks, this was treated as equivalent to ground truth and 

biases were calculated against it. In nearly every case, however, both 

radar-derived rainfall products underestimated the volume of rainfall 

accumulated in the catchment. However, the worst performance was 

clearly from the interpolation of the ASOS and MCC networks, which 

greatly underestimated the volume of rainfall accumulated in each case.

4.2. Intercomparison of Adjusted Data

Interpolating rainfall using the ASOS and MCC networks was 

clearly unsuitable for estimating either the amount or the spatial 

structure of rainfall within the catchment. Both of the radar-derived 

products tended to underestimate rainfall in the catchment as well. 

However, this was to a much lesser degree than occurred merely by 

using gages outside the catchment to interpolate rainfall. However, 

additional work was done to determine if calibrating the radar-derived 

rainfall products using one gage in the catchment would produce better 

results. A gage located centrally within the catchment, MOGC0125, was 

chosen for calculating the bias used in the adjustment.
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Event Adj. Conv. Radar-
Derived Rainfall 
Ratio

Adj. MPE Ratio

May 19, 2004 at 07 UTC 1.67 1.65

July 6, 2004 at 13 UTC 1.25 0.93

August 4, 2004 at 08 UTC 0.81 0.77

August 4, 2004 at 09 UTC 1.02 0.89

August 26, 2004 at 06 UTC 0.99 1.15

August 26, 2004 at 07 UTC 1.02 0.94

August 27, 2004 at 18 UTC 0.89 1.03

October 18, 2004 at 10 UTC 1.06 0.90
Table 4.10: The ratio of adjusted radar-derived rainfall estimates to actual 
gage observations is shown.

Table 4.10 shows the mean bias for each event of the MPE and 

convective radar-derived rainfall products following the adjustments. If 

the May 19, 2004 at 07 UTC case is treated as an outlier in this data set 

and the other seven cases are examined, the mean and median bias are 

close to 1. Even including the case that appears to be an outlier, the 

mean ratio of the adjusted convective radar-derived rainfall to gage 

observations is 1.09 and the mean ratio of the adjusted MPE is 1.03. The 

median ratio of the adjusted convective radar-derived rainfall is 1.00 

and the median ratio of the adjusted MPE is 0.98. This suggests that the 

distribution is, indeed, skewed toward a higher ratio, because of an 

outlier.
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Event Adj. Conv. Radar-
Derived Rainfall 
Ratio Range

Adj. MPE Ratio Range

May 19, 2004 at 07 UTC 1.75 2.13

July 6, 2004 at 13 UTC 0.92 0.65

August 4, 2004 at 08 UTC 0.50 0.43

August 4, 2004 at 09 UTC 1.86 0.78

August 26, 2004 at 06 UTC 0.60 1.10

August 26, 2004 at 07 UTC 1.57 1.04

August 27, 2004 at 18 UTC 1.18 1.80

October 18, 2004 at 10 UTC 0.93 0.70
Table 4.11: The range of ratios of estimated rainfall to gage-observed rainfall 
for each event for the adjusted radar-derived products is shown.

The range of the ratios for the adjusted radar-derived products for 

each event is shown in table 4.11. Because, for most cases, the bias 

adjustment increased the rainfall estimate throughout the catchment by 

multiplying by a bias correction factor greater than 1, the range of ratios 

actually increased. This is demonstrated in Table 4.12, which shows the 

bias correction factors by which the radar-estimates are multiplied for 

each case.

Event Conv. Radar-Derived 
Rainfall Bias 
Correction Factor

MPE Bias Correction 
Factor

May 19, 2004 at 07 UTC 3.58 3.60

July 6, 2004 at 13 UTC 1.49 1.53

August 4, 2004 at 08 UTC 0.77 1.08

August 4, 2004 at 09 UTC 1.65 1.69

August 26, 2004 at 06 UTC 1.21 1.80

August 26, 2004 at 07 UTC 0.82 0.53

August 27, 2004 at 18 UTC 0.95 2.88

October 18, 2004 at 10 UTC 1.33 0.76
Table 4.12: Bias correction factors for each of the events are shown.
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Percentile 10 20 30 40 50 60 70 80 90

Adjusted Convective Radar-
Derived Rainfall Ratio

0.66 0.75 0.86 0.94 1.00 1.01 1.15 1.40 1.72

Adjusted MPE Ratio 0.62 0.68 0.76 0.86 0.98 1.00 1.15 1.29 1.61
Table 4.13: The distribution of the ratios of adjusted radar-derived rainfall 
estimates to gage observations is shown in this table.

The median of the distribution of ratios of adjusted radar-derived 

rainfall products to gage-observed rainfall appears to be near 1, as 

shown by the distribution in Table 4.13. The minimum ratio of the 

adjusted convective radar-derived rainfall is 0.36 and the maximum is 

2.75. For the adjusted MPE, the minimum ratio is 0.21 and the maximum 

bias is 3.13. The standard deviation of both adjusted radar-derived 

rainfall products is 0.46. There does not appear to be a large difference 

between using the adjusted MPE or the adjusted radar-derived rainfall 

product. Both exhibit wide variability in bias within a single event. 

However, the mean biases tend to be relatively close to 1 as compared 

to the biases for unadjusted radar-derived rainfall estimates.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

Adj. Conv. 
Radar-
Derived 
Rainfall Min. 
(mm)

Adj. Conv. 
Radar-
Derived 
Rainfall Max. 
(mm)

May 19, 2004 at 07 
UTC

5.3 32.8 8.5 65.6

July 6, 2004 at 13 
UTC

13.8 34.7 19.9 36.5

August 4, 2004 at 
08 UTC

24.4 34.3 12.7 28.4

August 4, 2004 at 
09 UTC

14.4 30.3 9.3 38.3

August 26, 2004 at 
06 UTC

26.0 73.2 35.7 71.6

August 26, 2004 at 
07 UTC

4.1 20.7 1.2 26.8

August 27, 2004 at 
18 UTC

1.3 29.5 1.0 27.0

October 18, 2004 at 
10 UTC

5.1 19.9 4.5 32.4

Table 4.14: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the adjusted convective radar-derived 
rainfall.
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Event Gage Min. 
(mm)

Gage Max. 
(mm)

Adjusted 
MPE Min. 
(mm)

Adjusted MPE 
Max. (mm)

May 19, 2004 at 07 
UTC

5.3 32.8 13.8 48.2

July 6, 2004 at 13 
UTC

13.8 34.7 15.4 22.2

August 4, 2004 at 
08 UTC

24.4 34.3 15.7 28.2

August 4, 2004 at 
09 UTC

14.4 30.3 15.6 23.4

August 26, 2004 at 
06 UTC

26.0 73.2 31.5 95.2

August 26, 2004 at 
07 UTC

4.1 20.7 1.3 20.8

August 27, 2004 at 
18 UTC

1.3 29.5 2.1 47.1

October 18, 2004 at 
10 UTC

5.1 19.9 2.4 12.8

Table 4.15: The minimum and maximum rainfall totals observed at gages in 
the catchment are shown compared with the minimum and maximum rainfall 
totals estimated in the catchment by the adjusted MPE.

Tables 4.14 and 4.15 show the minimum and maximum rainfall 

within the catchment estimated by the radar-derived products and 

compares them to gage observations. In many cases, the minimum and 

maximum rainfall estimated are within a few millimeters of the observed 

values. However, in some cases, the maximum rainfall estimated is 

much larger than the maximum observed rainfall within the catchment. 

To a lesser extent, this is also observed when examining the minimum 

rainfall and minimum estimated rainfall in the catchment. This is 

consistent with the strong variation in bias during a single rainfall event 

from gage to gage as suggested previously.
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Case Adj. MPE Vol. Adj. Conv. Radar-
derived Vol.

ASOS/MCC/USDA-
ARS Vol.

May 19, 2004 at 07 
UTC

218070 202150 151761

July 6, 2004 at 13 
UTC

200503 152968 161696

August 4, 2004 at 
08 UTC

164428 171426 218221

August 4, 2004 at 
09 UTC

160574 141399 146941

August 26, 2004 at 
06 UTC

411373 500361 455055

August 26, 2004 at 
07 UTC

72589.5 60314.8 80934.9

August 27, 2004 at 
18 UTC

115863 179185 127190

October 18, 2004 at 
10 UTC

82017.9 55850.5 78513.3

Table 4.16: Shown is the volume of water accumulated in the catchment in 
units of cubic meters during the duration of the event.

The total volume of rainfall estimated in the catchment for each 

adjusted radar-derived rainfall product is shown in Table 4.16 and is 

compared with the interpolation using the ASOS, MCC, and USDA-ARS 

rain gage networks. Although there is still some variability between the 

volume of rainfall accumulated using the radar-derived products and the 

volume of water accumulated using the interpolation ASOS, MCC, and 

USDA-ARS networks, it is less than the variability between estimated 

rainfall and gage observations. In most of the cases, the variation 

between the volume from radar-derived rainfall estimates and the 

volume from the interpolation of data from the ASOS, MCC, and USDA-

ARS networks was under 25%.
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4.3. Discussion of Results

A number of findings were made during the course of this study 

regarding the usefulness of different radar and rain gage networks to 

estimate the rainfall in the Goodwater Creek catchment. Most notably, 

the use of surrounding rain gage networks to estimate rainfall within the 

catchment performed very poorly and the network is unsuitable for 

estimating rainfall within the catchment. The rain gage networks 

surrounding the catchment both severely underestimated the rainfall 

and failed to accurately represent the spatial distribution of rainfall 

within the catchment. This indicates the need for a gage within the 

catchment to accurately represent the rainfall that occurred in the 

catchment.

Concerning radar products, when applying a convective Z-R 

relationship to reflectivity or when using the MPE data, which is derived 

in part from radar observations, the rainfall within the catchment was 

still underestimated in most situations. The bias of radar-derived 

products compared against rain gage observations varied greatly from 

event to event and from gage to gage during an event. This suggests 

that the ability of the radar products used here to accurately represent 

the spatial distribution of rainfall within the catchment is very limited at 

best.
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There are a number of reasons why the performance of the radar-

derived products may have been poor. One reason is that the height of 

the lowest elevation of the radar beam is over 2,000 m above ground 

over the catchment. Many processes may occur beneath the level at 

which the radar is scanning, including merging and splitting of raindrops, 

evaporation, and wind drift. Additionally, the choice of a convective Z-R 

relationship may not have been appropriate for all of these events.

Although the convective Z-R relationship is frequently used in the 

central United States, it is unclear as to whether is suited for relating 

reflectivity to convective rainfall during the summer. Often, an air mass 

with very tropical characteristics is situated over the central United 

States. Characteristics of this air mass include weak vertical wind shear, 

abundant moisture, moderate to strong instability, and warm 

temperatures both at the surface and aloft. These factors, along with the 

concentration of cloud condensation nuclei, can influence the drop size 

distribution of the rainfall and variations that may occur between the 

height at which the radar is scanning and the rainfall at the surface. 

These characteristics are also true of tropical airmasses such as those 

frequently found along the Gulf Coast, for example. Most of these cases 

were during the summer and it may have been appropriate to use the 

Rosenfeld tropical Z-R relationship instead of the WSR-88D convective Z-

R relationship.
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The MPE underestimated rainfall to a greater extent than did the 

convective radar-derived rainfall product. This is likely due to the 

postprocessing of rainfall estimates that were initially derived from 

reflectivity. It is unlikely that any rain gages within the catchment are 

used to pair radar estimates of rainfall to rain gage observations. If the 

calibration is done on the basis of rain gages outside the catchment, it 

may cause the rainfall within the catchment to be poorly represented.

This does not, however, explain fully the bias toward 

underestimating rainfall that was exhibited by the MPE. An additional 

reason is possibly the use of PRISM climate data in calibrating the 

rainfall. Although the climate data is likely useful in calibrating radar-

estimated rainfall in typical events, most of the cases that were selected 

were atypical events. The frequency of rainfall events plotted against 

the intensity of the event would likely fit well to a curve resembling an 

exponential distribution. As the intensity of the event increases, the 

frequency of the event decreases. However, these events are very 

important to measure accurately because they can be responsible for 

flooding and other adverse effects such as soil erosion and transport of 

chemicals. The high-end convective events are likely to be poorly 

represented by climatology as compared to more typical rainfall events. 

This is another possible reason for the bias of underestimating rainfall in 

the catchment.
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The adjustments applied to the radar-derived products do well to 

greatly limit the mean ratio of estimated rainfall to gage observations 

when averaged over several events. For individual events, adjusting 

radar-derived rainfall products based on a single gage within the 

catchment does not necessarily eliminate the difference between radar-

derived rainfall estimates and gage observations at other locations. 

There is still a high degree of variation in the ratio of radar-derived 

rainfall estimates to gage observations from one location to another and 

from one event to another.

Despite the limitations in accurately modeling the finescale 

structure of rainfall over the catchment, the adjustments to the radar-

derived rainfall estimates generally performed well in estimating the 

volume of rainfall over the entirety of the catchment. Although the 

techniques applied in this study to estimate rainfall using radar data 

may be unsuitable for use at individual sub-basins within the catchment, 

it may still be useful in estimating the total volume of rainfall over the 

entire catchment. One gage may be suitable for calibrating rainfall 

estimates over a catchment. Additional gages or more advanced 

techniques are needed to accurately estimate rainfall at individual 

locations within the catchment.

One such technique for improving upon the estimates of rainfall 

within the catchment is to apply a more advanced technique to choose 
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an appropriate Z-R relationship. While it is likely that the WSR-88D 

convective Z-R relationship would perform quite well in some instances, 

other Z-R relationships may be more appropriate for midsummer 

convection in particular. Creating an algorithm to choose between 

multiple convective Z-R relationships may produce better results. In 

particular, the Rosenfeld tropical Z-R relationship is designed to produce 

higher rainfall rates, particularly for higher reflectivity. This may be a 

more appropriate choice of a Z-R relationship for some of the events. 

Assuming the typical hail cap of 53 dBZ in the central United States, it is 

impossible to achieve some of the rainfall rates during the event on 

August 26, 2004 at 06 UTC. Applying a Z-R relationship better suited for 

tropical convection, possibly along with raising the hail cap, may 

produce more realistic estimates of rainfall in these situations. 

Increasing the hail cap is likely appropriate considering the warm 

vertical profile typically associated with a tropical air mass. Additionally, 

the presence of abundant moisture, strong instability, and weak shear 

likely affects the drop size distribution. For these reasons, the Rosenfeld 

tropical Z-R relationship may be more appropriate in some instances. 

The remainder of this work focuses on an attempt to develop an 

algorithm to choose an appropriate Z-R relationship in an objective 

manner and apply it to radar-observed reflectivity to estimate rainfall.
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Chapter 5

Rainfall Type Algorithm Methodology

The purpose of this chapter is to describe the background of the 

algorithm used for applying mutliple Z-R relationships within a single 

radar image. This includes explaining the mathematical basis of the 

algorithm and describing some of the tools used in performing the 

processing. The steps of the algorithm are described at the end of the 

chapter.

5.1. Purpose of Algorithm

The results of the work presented in Chapter 4 indicate that 

merely applying the WSR-88D convective Z-R relationship to reflectivity 

tended to underestimate rainfall. Although this could be attributed to 

poor radar coverage, it may also be due to the choice of an unrealistic Z-

R relationship. The purpose of the algorithm is to choose an appropriate 

Z-R relationship based on radar observations and apply it to the radar 

observations. The choice of an appropriate Z-R relationship took into 

account many of the suggestions in Section 4.3. The algorithm that was 

developed was then evaluated using the eight cases described in 

Section 3.4. Although verifying the processing done by each step of the 
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algorithm is difficult and subjective, the end result of the algorithm can 

be evaluated against actual rain gage observations.

5.2. Identifying Precipitation Type and Structure

The algorithm relies heavily on spectral analysis, which is 

accomplished through use of the Fourier Transform (FT). The 

mathematical basis for the FT is described extensively in Appendix D. 

This section will focus just on what the FT accomplishes without an 

extensive mathematical discussion. Additionally, the focus of this 

section will be on the use of the Discrete Fourier Transform (DFT).

The FT operates on an infinite domain and using continuous data. 

Although this is mathematically feasible, it is not possible using actual 

observed data sets. Domains are finite and data are collected at discrete 

intervals. The continuous form of the FT is not suited for this, and as a 

result, a discrete form of the transform, the DFT, is used.

The basis of the FT is to take a signal, regardless of ithe number of 

dimensions, and to transform it from the spatial domain to the 

frequency domain. In the spatial domain, the independent variables 

represent a position in space. The dependent variable is a power at the 

location specified by the independent variables. In the case of a radar 

image, the independent variables x and y represent a position on a grid 

and the dependent variable is reflectivity at that location. However, in 
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the frequency domain, the independent variables represent wave 

numbers. Greater wave numbers indicate higher frequencies and shorter 

wavelengths. The dependent variable is the power of the wave with the 

wave numbers specified by the independent variables. In two 

dimensions, wave numbers u and v are used where u is the wave 

number in the x direction and v is the wave number in the y direction. 

This process is known as analysis of a signal or as decomposition.

The reason for transforming a signal or image from the spatial 

domain to the frequency domain is that some operations can be more 

easily performed in the frequency domain. This is more clearly explained 

by the Convolution Theorem, which states that multiplication in one 

domain is equivalent to convolution in the other domain. In particular, 

Gaussian filtering can be accomplished through multiplication in the 

frequency domain. This operation would be equivalent to convolution in 

the spatial domain.

Upon completing any operations in the frequency domain, it is 

possible to back transform the signal from the frequency domain into 

the spatial domain. A similar transform, the Inverse FT (IFT) is used to 

accomplish the transform to the spatial domain. As with the FT, both 

continuous and discrete forms of the IFT exist. For observed data sets, 

the discrete form of the IFT is used.  This process is known as synthesis 

of a signal or as recombination.
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The mathematics of the FT and IFT are beyond the scope of this 

chapter and are explained in Appendix D. For the purpose of this work, 

the FT is used to analyze a radar image and identify precipitation 

structures. Stratiform rain is frequently characterized as covering a 

broad area with relatively weak reflectivity and gradients in reflectivity 

as compared to convective precipitation. Convection usually occurs over 

smaller areas than stratiform precipitation and is characterized by 

strong localized updrafts and additionally strong but small reflectivity 

cores associated with downdrafts. Classification between convection and 

stratiform precipitation through horizontal reflectivity gradients, which is 

roughly equivalent to this description, was proposed by Klazura et al. 

(1999). Because of the larger size and weaker horizontal reflectivity 

gradients of stratiform precipitation, it should be manifested in the 

frequency domain as a low frequency signal. Convective precipitation, 

which occurs with stronger horizontal reflectivity gradients, should be 

manifested as strong power in higher frequencies. Gaussian filters can 

be used to isolate frequency bands of interest and retain the signal in 

those bands while attenuating the signal in other bands. Discrimination 

between convective and stratiform precipitation was accomplished in 

this work through Gaussian filtering and retaining signals in empirically 

derived frequency bands.
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Similar procedures can be used to identify clusters of 

thunderstorms or individual storms. Clusters of storms are larger than 

individual storms and therefore should have a greater wavelength and 

lower frequency. Additionally, areas identified as storms should, as a 

prerequisite, be areas of convection. This forms the basis for 

discriminating between convective and stratiform precipitation and 

identifying thunderstorms at multiple scales. The detailed description of 

this algorithm is beyond the scope of this section and is described in 

detail in Appendix F.

5.3. Evaluating Thunderstorm Organization

It is also of interest to evaluate the organization of thunderstorms. 

Even during the summer in the central United States, organized 

thunderstorm activity is frequently associated with mid-latitude weather 

systems. As mid- and upper-level winds increase near mid-latitude 

cyclones, vertical wind shear is likely to increase. As a result, 

thunderstorms are more likely to organize into multicell clusters, 

multicell lines, and even supercells than in a weakly sheared 

environment. A Z-R relationship designed for use with tropical 

convection may be appropriate for air mass thunderstorms and other 

poorly organized thunderstorm activity. However, as thunderstorm 
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organization increases, a Z-R relationship associated with mid-latitude 

convection may be more appropriate.

The algorithm that was developed made use of two ways to 

determine thunderstorm organization. One method was to detect the 

presence of rotation, which would typically be associated with the 

rotating updraft of a supercell thunderstorm or bookend vortices that 

are commonly associated with bow echoes. Rotation in thunderstorms is 

one indicator of organized thunderstorm activity. A second method is to 

approximate the shape of a thunderstorm as an ellipse and use the 

eccentricity of the ellipse to evaluate whether or not a storm is linear or 

quasi-linear in shape.

5.3.1. Detecting Rotation in Thunderstorms

A preliminary study was conducted to attempt to detect rotation in 

thunderstorms using radial velocity as detected by radar. The primary 

goal of the study was to attempt to distinguish between supercells and 

non-supercells. The algorithm described in Section 5.2 and Appendix F 

was used to detect storms in 27 cases. In these 27 cases, 314 storms 

were identified.

These storms were considered supercells if they were either a 

discrete supercell or were a cluster of thunderstorms containing an 

embedded supercell. For each of the storms identified, a subjective 
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determination was made as to whether or not the storm was a supercell. 

The classification was based primarily on examining reflectivity to 

determine the organization of thunderstorms and examining radial 

velocity for persistent rotation. Thunderstorms that appeared to be 

poorly organized, such as air mass thunderstorms, were not identified as 

supercells. Linear thunderstorms were also not identified as supercells. 

Several tilts of radial velocity were examined in several successive 

volume scans for evidence of persistent rotation. If persistent rotation 

was found and the storm was not linear nor disorganized, it was 

identified as a supercell in the subjective analysis.

Shear vorticity was calculated using the w2circ algorithm (Smith 

and Elmore, 2004) and interpolated to a latitude-longitude-height grid 

using w2merger (Lakshmanan et al., 2006), both of which are algorithms 

in WDSS-II (Lakshmanan et al., 2007b). The shear vorticity was averaged 

over the lowest four kilometers above mean sea level and was 

smoothed using a low-pass filter. The strongest shear vorticity within 

each storm was identified. Shear vorticity strength of 0.002s-1 was found 

to be a good discriminator between supercells and non-supercells. 

Approximately 80% of the supercells identified in the subjective analysis 

exhibited rotation stronger than the threshold and approximately 80% of 

the non-supercells identified in the subjective analysis exhibited rotation 

weaker than the threshold.
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The threshold of 0.002s-1 is on the same order of magnitude as 

previous thresholds used in identifying mesocyclones. Stumpf et al. 

(1998) provided a good description of two mesocyclone detection 

algorithms. The mesocyclone detection algorithm implemented prior to 

that required vorticity of 0.006s-1 within 100 km of the radar. The 

required vorticity strength decreased linearly to 0.003s-1 at a distance of 

200 kilometers from the radar, and remained constant at greater 

distances. The algorithm they devised by halved the vorticity thresholds 

but retained the range dependence from the radar. Additionally, the 

algorithm ranked mesocyclones as stronger as the vorticity increased.

The vorticity threshold of 0.002s-1 is approximately equivalent to 

values identified in previous work and is also consistent with what a 

human might identify as a supercell from examining radar imagery. 

Therefore it seems reasonable to use this approximate value for 

identifying rotating thunderstorms when determining thunderstorm 

organization.

5.3.2. Detecting Linear Thunderstorms

Upon identifying a thunderstorm, many metrics can be calculated, 

including approximating the shape of the storm. The metrics calculated 

by the algorithm include approximating an ellipse to the shape of the 

storm and then determining the eccentricity or aspect ratio of the 
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ellipse. Large aspect ratios could be a good indicator of linear 

organization of storms. Using a similar method for identifying 

thunderstorms, Lack (2007) found that an aspect ratio of 3.2:1 is a 

reasonable threshold for distinguishing between linear and non-linear 

storms. The algorithm that was developed here also used an aspect of 

3.2:1 as a threshold between linear and non-linear storms.

5.4. Selecting an Appropriate Z-R Relationship

Three Z-R relationships were used in the algorithm, which were 

the Marshall-Palmer Z-R relationship (equation 2.3), the WSR-88D 

convective Z-R relationship (equation 2.2), and the Rosenfeld tropical Z-

R relationship (equation 2.6). The Marshall-Palmer Z-R relationship 

typically is used for stratiform precipitation, and was used for 

precipitation that the algorithm identified as stratiform precipitation. 

Rainfall from convective precipitation was estimated using either the 

WSR-88D convective Z-R relationship or the Rosenfeld tropical Z-R 

relationship, depending on the characteristics of the precipitation.

Not all convection identified by the algorithm must actually be 

identified as part of actual storms. Convection that was not associated 

with a particular storm was assigned a Z-R relationship depending on 

the time of year. During the summer, and in the algorithm this is defined 

as the months of June, July, and August, the Z-R relationship used is the 
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Rosenfeld tropical Z-R relationship. However, in the other months, 

rainfall from convection not associated with storms that have been 

identified is estimated using the WSR-88D convective Z-R relationship. 

This is primarily due to the frequent presence of tropical air masses over 

the central United States, which are less common on other months. It 

was speculated that the Rosenfeld tropical Z-R relationship could more 

accurately estimate higher rainfall intensities.

For storms that were identified, the characteristics of each storm 

determined the Z-R relationship that was used to estimate rainfall. For 

cases from May 15 through September 15, the algorithm chose between 

the WSR-88D convective Z-R relationship and the Rosenfeld tropical Z-R 

relationship. For cases from the rest of the year, the WSR-88D 

convective Z-R relationship was always used. This was done because 

tropical airmasses are more frequently found in the central United 

States during the summer and are less likely during other times of the 

year.

Very strong reflectivity is almost always associated with hail. 

Therefore if the strongest reflectivity in a storm was at or greater than 

60 dBZ, the WSR-88D convective Z-R relationship was chosen. This is 

because tropical airmasses tend to be very warm at the surface and in a 

deep layer above the surface. The warm layer melts hail before it 

reaches the surface and also makes production of large hail very 
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difficult. For these reasons, hail is unlikely in tropical convection, and 

therefore the WSR-88D convective Z-R relationship is likely to be 

appropriate if hail is present.

In the algorithm, if conditions for a storm were met for possible 

tropical convection, the Rosenfeld tropical Z-R relationship was applied. 

These conditions are: a climatologically favorable time of year, lack of 

hail, and convection that is not organized as a line or with rotation. If 

any one of these conditions was not met, however, the WSR-88D 

convective Z-R relationship was used for the storm.

5.5. Limiting Hail Contamination

It is also of interest to consider the hail cap, which limits rainfall 

rate to a predefined upper bound. Hail caps are implemented in rainfall 

estimation algorithms because hail contamination can produce 

unreasonably high estimated rainfall when estimating rainfall rate from 

reflectivity. One drawback of applying a hail cap is that it may also 

prevent estimation of very high rainfall rates that are realistic. Although 

a hail cap may not interfere with estimating most rainfall rates, it may 

prevent accurate estimation of unusually high rainfall rates. These 

unusual rainfall rates, although not frequent, are very important to 

measure accurately because of the possibility of flooding and extreme 

soil loss due to runoff. Typically, the hail cap in the central United States 
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is set at 53 dBZ. This may be adjusted upward in other regions, such as 

near the Gulf Coast, where hail is less likely during the summer. 

Typically, near the Gulf Coast, the hail cap is used to limit rainfall rate to 

150 mm hr-1 regardless of the Z-R relationship in use. Such a hail cap 

may not be reasonable, even in the central United States. Upon 

examining two years of data from 2003 and 2004 recorded by gages in 

the catchment, rainfall rates over ten minutes were observed above 150 

mm hr-1 twice. In such situations, implementing a hail cap of 150 mm hr-1 

will not produce good estimates of rainfall. Additionally, using the 53 

dBZ hail cap and the WSR-88D convective Z-R relationship, rainfall rate 

is limited to 104 mm hr-1, which was exceeded during four ten minute 

periods during 2003 and 2004. Although the hail cap is not exceeded by 

most storms, the data also suggests that such extreme rainfall events 

are not particularly rare, either.

For these purposes, the algorithm used a hail cap of 53 dBZ, or 

104 mm hr-1, when using the Marshall-Palmer and WSR-88D convective 

Z-R relationships during the months of September through May. 

However, during June through August, the hail cap was raised to 55 dBZ. 

When using the WSR-88D convective Z-R relationship, a reflectivity of 55 

dBZ produces a rainfall rate of 144 mm hr-1. Using a hail cap of 55 dBZ 

with the Marshall-Palmer Z-R relationship allows a maximum rainfall rate 

of approximately 100 mm hr-1. The hail cap was always 52 dBZ when the 
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Rosenfeld tropical Z-R relationship was used. This produces a rainfall 

rate of 216 mm hr-1. Although this is unreasonable over a significant 

length of time, it is possible that such a rainfall rate could occur over a 

short length of time. These hail caps should be sufficient for estimating 

most rainfall rates from radar reflectivity, including extreme events.

5.6. Procedure

The algorithm operated using a square domain with a horizontal 

length of 256 km and a resolution of 1 km. Each gage was matched with 

a single pixel, which represented a 1-km square in which the gage was 

located. Rainfall totals were summed over one hour, the duration of 

each event as defined here, and were compared against both the results 

that would be produced using purely the WSR-88D convective Z-R 

relationship and the observations made by the gages. The procedure for 

comparing gage observations to radar-estimated rainfall was identical to 

the procedure for comparing gages against other radar-derived 

products, which was described in section 3.5.4.

Rain gage data with observations taken every two minutes were 

compared against radar-estimated rainfall to investigate whether the 

rainfall rates produced by the algorithm were realistic. The USDA-ARS 

rain gage network records observations of intensity and accumulation 

over two minute intervals. This data was acquired for the rainfall events 
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occurring on August 26, 2004 because the highest rainfall rates in any of 

the eight cases were observed during events on that day. A WSR-88D 

radar can only complete a volume scan as frequently as every four 

minutes. However, because data from two radars, located in Weldon 

Spring, MO (LSX), and Pleasant Hill, MO (EAX), were used, observations 

in areas scanned by both radars will occur more frequently than every 

four minutes. Because data from the two radars was composited using 

the w2merger algorithm (Lakshmanan et al, 2006), it is justifiable to 

compare these data against rain gage observations taken every two 

minutes. Data from the LSX radar were unavailable during the May 19, 

2004 event. No data was available from the EAX radar during the events 

on August 26, 2006.

The algorithm procedure can be summarized in the following 

steps:

1. Identify regions of convection and stratiform precipitation

2. Identify individual storms within the convection

3. Determine the properties of individual storms such as the 

strongest reflectivity within the storm, whether or not 

rotation is present, and the aspect ratio of the storm

4. Determine at each point in the image which Z-R relationship 

should be used
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5. Determine the hail cap that should be used at each point 

within the radar image

6. Apply the appropriate Z-R relationship and hail cap at each 

point within the radar image
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Chapter 6

Results of Algorithm

The purpose of this chapter is to describe the results of using the 

algorithm for applying multiple Z-R relationships to a single radar image 

as described in Chapter 5. For the eight cases, radar estimates were 

only compared only at locations where a gage was located and not for 

the entire catchment or domain. The reader may note that radar 

estimates using the convective Z-R relationship in this chapter may 

differ from those presented in Chapter 4. This is due entirely to a 

different source of data. The estimates in Chapter 4 were generated 

from level III data, which has a precision of 5 dBZ. The rainfall estimates 

in this chapter used level II data, which has a precision of 0.5 dBZ. 

Additionally, data from two WSR-88D radars, located in Weldon Spring, 

MO and Pleasant Hill, MO, may affect the reflectivity that is input to the 

algorithm.

6.1. Algorithm Output

For every gage, in each of the eight cases, the rainfall estimate 

using multiple Z-R relationships produced the same or greater rainfall 

accumulations than by using only the WSR-88D convective Z-R 

relationship. It was also apparent that some of the bias of using only the 
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WSR-88D convective Z-R relationship as described in Chapter 4 was due 

to the data set. The quantization of reflectivity to 5 dBZ intervals 

introduced some errors. Because the scale is logarithmic, the 

quantization introduces a bias that causes precipitation to be 

underestimated. However, this error was not a factor when examining 

the MPE, which is not quantized in this way. Results are shown in Table 

6.1 on a case-by-case basis of the average percent differences in using a 

single Z-R relationship and the algorithm to estimate rainfall.

Event Conv. Z-R Difference from 
Observations

Multiple Z-R Difference 
from Observations

May 19, 2004 at 07 UTC 68.3% 83.2%

July 6, 2004 at 13 UTC 96.4% 204.5%

August 4, 2004 at 08 UTC 154.8% 211.1%

August 4, 2004 at 09 UTC 72.4% 138.9%

August 26, 2004 at 06 UTC 122.7% 155.2%

August 26, 2004 at 07 UTC 126.0% 135.3%

August 27, 2004 at 18 UTC 145.6% 172.3%

October 18, 2004 at 10 UTC 61.0% 62.8%
Table 6.1: This table shows the percent of rainfall estimated by the WSR-88D 
convective Z-R relationship and multiple Z-R relationships as compared to 
rain gage observations. These percentages computed by dividing the radar-
estimated rainfall by gage observations and multiplying by 100.

It is apparent that using the multiple Z-R relationships does have 

an impact on the rainfall rate estimated by radar. In each of these eight 

cases, moderate to heavy rainfall was falling over the catchment. Just 

because in each of these eight cases higher rainfall rates were produced 

by using multiple Z-R relationships does not mean that the algorithm will 

always produce higher rainfall rates than the WSR-88D convective Z-R 
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relationship. In particular, in situations where precipitation is primarily 

stratiform, multiple Z-R relationships as implemented in the algorithm 

may produce lower rainfall estimates than using the WSR-88D 

convective Z-R relationship. Therefore it is unclear whether the bias 

toward heavier rainfall being estimated by the algorithm as compared to 

the WSR-88D convective Z-R relationship would occur in most cases or if 

it is largely a result of the cases that were selected.

During the summer, there is a clear bias toward overestimating 

rainfall, regardless of whether or not just the WSR-88D convective Z-R 

relationship or multiple Z-R relationships are used. Outside of the 

summer, the bias was toward underestimating rainfall in the catchment. 

This seasonal bias may be partially due to the restriction against using 

the Rosenfeld tropical Z-R relationship outside of the summer. It is likely 

that the slightly higher rainfall rates found when using multiple Z-R 

relationships in the October 18, 2004 at 10 UTC event were due to the 

selection of the Marshall-Palmer Z-R relationship at times during the 

event. At weaker reflectivity, values at and below approximately 35 dBZ, 

the Marshall-Palmer Z-R relationship produces heavier rainfall rates than 

the WSR-88D convective Z-R relationship does.

Reducing the strongest reflectivity in a storm at which the 

Rosenfeld tropical Z-R relationship can be selected from 60 dBZ to 55 

dBZ had little influence on the rainfall accumulation estimated by the 
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algorithm. Instead, both the Rosenfeld tropical Z-R relationship and the 

WSR-88D convective Z-R relationship overestimate rainfall over the 

catchment during the summer when using this data set.

The heaviest rainfall totals in any of the cases occurred during the 

August 26, 2004 at 06 UTC event. During this event, radar-estimated 

rainfall tended to more closely match observations from gages recording 

the heaviest rainfall. Also of note is that the algorithm chose the WSR-

88D convective Z-R relationship instead of the Rosenfeld tropical Z-R 

relationship throughout almost all of the event, as shown in figure 6.1.

Figure 6.1: Reflectivity from 0530 UTC on August 26, 2004 is shown to the 
left. To the right, the Z-R relationship chosen by the algorithm is shown. 
Dark blue indicates areas where precipitation was not occurring. Light blue 
indicates where the Marshall-Palmer Z-R relationship was selected. Orange 
indicates where the WSR-88D convective Z-R relationship was selected. Dark 
red indicates where the Rosenfeld tropical Z-R relationship was used.

It is likely that choosing the Rosenfeld tropical Z-R relationship would 

have produced unreasonably high rainfall estimates. Rainfall totals and 

estimates for this event are shown in Table 6.2.
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Gage Gage-Observed 
Rainfall (mm)

Multiple Z-R Rainfall 
(mm)

Conv. Z-R Rainfall 
(mm)

MOGC0116 65.5 75.2 (114.7%) 61.9 (94.4%)

MOGC0125 71.6 87.9 (122.8%) 74.2 (103.5%)

MOGC0126 67.1 90.3 (134.6%) 76.9 (114.7%)

MOGC0127 25.9 59.4 (228.8%) 40.9 (157.5%)

MOGC0132 57.7 81.1 (140.6%) 63.0 (109.3%)

MOGC0134 36.8 70.5 (191.6%) 55.8 (151.6%)

MOGC0138 73.2 87.9 (120.2%) 73.6 (100.7%)

MOGC0139 60.7 98.8 (178.1%) 86.7 (142.9%)

MOGC0201 38.5 68.5 (157.8%) 49.1 (127.6%)

MOGC0203 44.7 70.5 (155.2%) 55.8 (124.9%)
Table 6.2: Gage observations and rainfall estimates using the WSR-88D 
convective Z-R relationship and multiple Z-R relationships during the August 
26, 2004 at 06 UTC event. The percentages are comparing the radar-
estimated rainfall to the gage observations.

In some instances, using a single Z-R relationship underestimated 

the rainfall whereas using multiple Z-R relationships overestimated the 

rainfall. This result suggests that neither the WSR-88D convective Z-R 

relationship nor the Rosenfeld tropical Z-R relationship is the appropriate 

Z-R relationship to relate reflectivity to rainfall rate during the event. 

Results from an example event, August 4, 2004 at 09 UTC, are shown in 

Table 6.3.
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Gage Gage-Observed 
Rainfall (mm)

Multiple Z-R Rainfall 
(mm)

Conv. Z-R Rainfall 
(mm)

MOGC0116 22.0 35.9 (163.1%) 17.7 (80.6%)

MOGC0125 16.7 32.6 (196.0%) 16.5 (98.8%)

MOGC0126 14.4 28.1 (195.3%) 14.7 (102.0%)

MOGC0127 21.5 15.5 (71.9%) 9.6 (44.8%)

MOGC0132 23.1 21.6 (93.4%) 13.1 (56.6%)

MOGC0134 26.9 24.7 (91.9%) 13.0 (48.3%)

MOGC0138 15.1 32.7 (215.9%) 16.4 (108.5%)

MOGC0139 17.1 26.9 (157.1%) 13.8 (80.7%)

MOGC0201 30.3 32.8 (108.1%) 16.2 (53.5%)

MOGC0203 25.8 24.7 (95.8%) 13.0 (50.3%)
Table 6.3: Gage observations and rainfall estimates using the WSR-88D 
convective Z-R relationship and multiple Z-R relationships during the August 
4, 2004 at 09 UTC event. The percentages are comparing the radar-estimated 
rainfall to the gage observations.

An additional comparison was done between rainfall observations 

taken every two minutes and radar-estimated rainfall using a single Z-R 

relationship and multiple Z-R relationships. Two gages were selected 

during the August 26, 2004 events. One gage, MOGC0138, was selected 

because it recorded the highest rainfall during the 06 UTC hour. The 

other gage that was selected, MOGC0203, produced a more typical 

rainfall rate during that hour. Below, four figures, 6.2 through 6.5, are 

presented to show the variations in rainfall accumulation over the period 

as well as the variation in rainfall rate.
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Figure 6.2: Rainfall accumulation at the gage MOGC0138 beginning at 0420 
UTC on August 26, 2004 and recording until to 0700 UTC.
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Figure 6.3: Rainfall accumulation at the gage MOGC0203 beginning at 0420 
UTC on August 26, 2004 and recording until to 0700 UTC.
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Figure 6.4: Rainfall rate at the gage MOGC0138 beginning at 0420 UTC on 
August 26, 2004 and recording until to 0700 UTC.
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Figure 6.5: Rainfall rate at the gage MOGC0203 beginning at 0420 UTC on 
August 26, 2004 and recording until to 0700 UTC.

Much of the overestimation of rainfall appears to occur at lower 

actual rain rates when the Z-R relationships produce much higher 

rainfall rates than were actually observed. It did not appear that 

overestimating the highest rainfall rates led to most of the error. 

Instead, overestimating rainfall rate for an extended period of time at 

times when actual rain rates were lower led to a large portion of the 

error. In some instances throughout the data, increases in estimated 

rainfall rate occurred a few minutes before the actual rainfall rate was 

observed to increase. This could be explained by the time needed for a 

raindrop to fall from the height at which the radar is scanning to the 
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surface or possibly a mismatch in time stamps. It is also apparent that 

the hail cap is frequently reached when applying the WSR-88D 

convective Z-R relationship and this is a source of underestimating 

rainfall.

6.2. Discussion of Results

There are several conclusions to be drawn from these results. One 

important conclusion, when comparing against results presented in 

Chapter 4 from the same events is that the data set plays a role in 

affecting the rainfall rate that is estimated by radar. It is clear that 

choosing multiple Z-R relationships within a single radar image can 

produce greatly different rainfall estimates than would be calculated 

using a single Z-R relationship. Additionally, the choice of Z-R 

relationships in this algorithm yielded higher rainfall rates than what 

would be produced using WSR-88D convective Z-R relationship. The 

adjustments seem to aid in estimating the heaviest rainfall produced by 

a storm, but also tend to greatly overestimate lighter rainfall rates. This 

suggests that not only is the appropriate Z-R relationship highly variable 

throughout a single radar image, but also even within a single storm.
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6.2.1. Effects of Different Data Sets

Although level III data may be suitable for estimating rainfall when 

reflectivity is relatively weak, it is less suited for estimating rainfall in 

situations where reflectivity is stronger. This is due to, when working 

with reflectivity in units of dBZ, the exponential increase in rainfall rate 

as reflectivity becomes stronger. As a result, the difference in rainfall 

rate between 20 dBZ and 25 dBZ is much less than the difference in 

rainfall rate between 45 dBZ and 50 dBZ. It is unclear if the use of data 

from two radars, both of which scan over the catchment, also affected 

the rainfall estimate.

It is also apparent that precise measurements of reflectivity are 

needed to properly estimate high-intensity rainfall. This relates to not 

only the source of the data but also to the calibration of the radar. In 

particular, a poorly calibrated radar could cause significant 

overestimation or underestimation of the heaviest rainfall within a 

storm.

The distance from the radar and interpolation used in generating 

the data set may also adversely affect the output of the algorithm. 

Although a single pixel in the domain had an area of 1 km2, the area of a 

single range bin is actually greater. The reflectivity observed is an 

average across the entire range bin and may not be representative of 
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the reflectivity at the actual gage location. Although this would generally 

cause rainfall to be underestimated, it is another source of error.

6.2.2. Z-R Relationship Selection

The Rosenfeld tropical Z-R relationship may be appropriate in 

estimating the heaviest rainfall that could be possible from a storm. This 

could be useful in flash flooding events. However, in areas where rainfall 

is lighter, the WSR-88D convective Z-R relationship, or even the 

Marshall-Palmer Z-R relationship may be better suited to estimating 

rainfall.

In several instances, the WSR-88D convective Z-R relationship 

underestimated rainfall while using multiple Z-R relationships 

overestimated rainfall. This suggests that, at least in those instances, 

that neither Z-R relationship is appropriate for estimating rainfall but 

instead that an intermediate rainfall estimate should be used. It may be 

more realistic to transition smoothly from one Z-R relationship to 

another instead of transitioning abruptly at the edge of a storm. 

Additional processing could be done to choose different Z-R 

relationships within a single storm. For example, one could expect the 

heaviest rain near the centroid of the storm, and an appropriate Z-R 

relationship could be applied. However, elsewhere in the storm, a 

different Z-R relationship may be more appropriate. This would preserve 

102



the ability of the algorithm to detect the heaviest rainfall rates within a 

storm while limiting the overestimation of rainfall at other locations.

In other cases, the heaviest rainfall was estimated well, but lesser 

rainfall totals were overestimated by radar. Although the reasons for this 

are not entirely clear, the finding is consistent with other studies. For 

example, Fulton (1999) investigated radar-estimated rainfall during a 

flash flooding event in Colorado. The radar, during the case study, was 

found to overestimate rainfall by about 60% over the entire scanning 

domain. However, Fulton (1999) also found that rainfall estimates from 

the storm that produced the flash flooding were very close to the total 

observed by a gage near the location. Additionally, Fulton (1999) 

adjusted the hail cap and found that, although rainfall accumulations 

were decreased, they still were well above gage observations. 

Speculated reasons for the overestimation of rainfall included a poor 

choice of Z-R relationship or a radar that was poorly calibrated at 

measuring reflectivity. If the errors noted in Fulton (1999) are partially 

due to a poor choice of a Z-R relationship, but in some regions the radar 

estimated rainfall well, it emphasizes the usefulness in applying multiple 

Z-R relationships across a single domain.

Both the WSR-88D convective Z-R relationship and the algorithm 

using multiple Z-R relationships did not do a poor job of estimating the 

highest rainfall rates. In some instances, these were actually 
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underestimated, partially due to the effects of the hail cap. These Z-R 

relationships seem somewhat appropriate for estimating rainfall in the 

portion of the storm where the rainfall is heaviest. However, through 

periods of lighter rain, the WSR-88D convective Z-R relationship and the 

algorithm using multiple Z-R relationships tended to overestimate 

rainfall. This suggests that another Z-R relationship may be better suited 

for estimating rainfall during these times. It is also entirely possible that 

rainfall was overestimated during those times because the radar was 

scanning approximately 2,300 m above the surface and most or all of 

the raindrops may have evaporated before reaching the surface.

6.2.3. Hail Cap Effects

It is also notable that, in many instances, instantaneous rainfall 

rates were at the maximum permitted by the hail cap that was selected. 

Additionally, some storms were identified as organized convection at 

some times during an event and not identified as organized convection 

at other times. For these reasons it is unsuitable to use the algorithm in 

its current form to estimate instantaneous rainfall rates or rainfall 

accumulation over a very short period of time. However, over longer 

durations, such as an hour, the algorithm should perform better. It is not 

necessarily incorrect for a storm to be identified as organized convection 

and disorganized convection at different times during an event. This 
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could be a result of a transition during the life cycle of a storm or 

representing that the storm is a borderline case and exhibits 

characteristics of both organized and disorganized convection at times. 

This would suggest, as well, that neither the WSR-88D convective Z-R 

relationship nor the Rosenfeld tropical Z-R relationship would be 

particularly well suited to estimate rainfall from such storms.

When using the WSR-88D convective Z-R relationship and the hail 

cap selected with it, rainfall was frequently underestimated during the 

heaviest rainfall observed in the storm. This was not an issue when the 

Rosenfeld tropical Z-R relationship was selected because the hail cap 

was not reached in these instances. During extended periods of heavy 

rainfall, the hail cap may lead to significant underestimation of rainfall. 

This is not a desirable result because, although these heaviest rainfall 

rates are uncommon, extended periods of heavy rainfall are capable of 

causing flooding. This occurred even when using the algorithm because 

the Rosenfeld tropical Z-R relationship was not chosen in some of these 

instances. Therefore higher and more accurate rainfall rates were not 

possible with the chosen Z-R relationship, leading to underestimated 

rainfall.
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6.2.4. Other Sources of Error

There are a number of other errors that may be a factor in the 

overestimation of rainfall. One is that during heavy rainfall events, 

rainfall is most likely to be underreported by gages. The gages in the 

USDA-ARS network are weighing rain gages, which are not prone to 

underestimating rainfall in the same ways as tipping-bucket rain gages. 

Wind is still a factor in causing rainfall to be underestimated. Although in 

many instances, it is likely that radar still overestimated the rainfall, it 

would be to a lesser degree than is indicated by the results. It is also 

likely that because of the height at which the radar is scanning is well 

above the surface that other influences such as wind drift and 

evaporation may affect the rainfall totals. Although evaporation is likely 

to lead to radar overestimation of rainfall, it is unclear whether wind drift 

would introduce a bias. It is quite possible that due to the generation of 

a cold pool at the surface that winds would spread the rain over a larger 

area. Because the radar is scanning well above the surface, it would not 

be possible to detect this occurring.

6.3. Future Work

For these reasons, it may be necessary to use different methods in 

intercomparing rainfall estimates with gage observations. It may be 

more useful to pair a gage with a neighboring pixel instead of the pixel 
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directly above the gage to more closely match the observed rainfall. 

This is one possible method to compensate for wind drift, both in terms 

of background winds and winds induced by the storm. Another problem 

that depends on range is the size of a single range bin at the distance at 

which the catchment is from the radar.

6.4. Summary

The conclusion from this work is that there is some usefulness in 

applying multiple Z-R relationships within a single radar image. Although 

the algorithm likely suffers from a poor choice of a Z-R relationship in 

some instances and also the inability to apply multiple Z-R relationships 

within a single storm, it does suggest that applying such a technique 

does have a significant impact on rainfall estimation.

The greatest overestimation of rainfall occurred during the 

summer months. For the two cases outside of the summer months of 

June, July, and August, rainfall tended to be underestimated by radar. 

This was contrary to the hypothesis that rainfall during the summer 

would be underestimated by radar. It may be necessary to, instead of 

having a seasonal dependence on the choice of Z-R relationship to 

instead use actual meteorological parameters, either from surface 

observations or numerical model output.
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It is clear that there is some usefulness in applying multiple Z-R 

relationships to a single radar image, but also that additional work is 

also needed. Some of the heaviest rainfall estimates produced may 

actually be reasonable. That suggests that there may, indeed, be some 

use for the Rosenfeld tropical Z-R relationship in the central United 

States. However, also of importance is to limit the overestimation of 

rainfall in other areas. In many instances, a large degree of variability in 

rainfall was noted across the catchment. This was less evident in the 

radar-estimates of rainfall.
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Chapter 7

Conclusion

The results of this project indicate that a sparse network of rain 

gages, such as the ASOS and MCC rain gage networks cannot accurately 

detect the rainfall from localized high-intensity convective rainfall 

events. This leads to poor detection of both the location and intensity of 

the heaviest rainfall during a heavy rainfall event, if the event is even 

resolved by the rain gage network. Other alternatives exist, such as 

deploying many rain gages over an area, as was done by the USDA-ARS 

network. However, due to the expense of deploying such a network, the 

primary goal of this work was to determine the usefulness of radar-

estimated rainfall as a substitute for a very dense network of rain gages.

The usefulness of radar to estimate rainfall depends both on the 

temporal and spatial scales at which an estimate is needed. Radar 

estimates likely are insufficient for detecting rainfall at small scales, 

both temporally and spatially. This was demonstrated by adjusting the 

radar-estimated rainfall by comparing the initial estimate to a single 

gage. Although the overall volume of rainfall within the catchment was 

reasonable, following the adjustment, there were still large errors at 

individual gages. This was also demonstrated by the inability of radar to 

estimate the highest intensities of rainfall that were observed. For these 
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reasons, it is apparent that radar-estimated rainfall may be reasonable 

for large time and spatial scales such as on the order of at least an hour 

in length and for a catchment of at least the size of the Goodwater 

Creek catchment. At smaller scales, other processes, likely including 

wind drift and variations in drop size distribution due to wind and 

merging and splitting of raindrops make radar estimates less accurate.

Additionally, there is a limited area over which gages can be used 

to calibrate radar-estimated rainfall. This was demonstrated by the 

underestimation of rainfall by the MPE in nearly every case. It is likely 

that the MPE performs better in areas where a gage is present from 

which to calibrate rainfall estimates. The MPE is also limited in 

estimating high-intensity rainfall events because of the influence of 

climatological parameters in estimating rainfall and the relatively 

unusual nature of high-intensity rainfall events such as those that were 

chosen for this project.

The choice of an appropriate Z-R relationship is also highly 

variable in space and time. It varies between convective and stratiform 

precipitation, but also within storms. Results showed that from one time 

to the next, the characteristics of a storm may change necessitating the 

use of a different Z-R relationship. Additionally, different Z-R 

relationships may be needed even within a single storm at a single time. 

It is likely that the drop size distribution varies from the core of a 
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downdraft of a storm to the outer edges of where rainfall is occurring. 

This would be due to greater saturation and less evaporation within the 

core of the downdraft as well as less influence of wind on larger 

hydrometeors within this region of a storm. The growth of raindrops is 

also influenced by the strength of the updraft. It may be difficult to 

assess this from radar imagery and it may also not be particularly useful 

to use numerical model output for these purposes. Although models may 

be quite useful in assessing the environment around storms or even 

within large regions of stratiform precipitation, they are far less likely to 

be useful when assessing the environment within a storm. It may be 

more useful to apply conceptual models of the distribution of the 

heaviest rainfall within a storm by weighting it so the heaviest rain 

occurs near the estimated centroid of the storm.

It is clear that choosing multiple Z-R relationships within a single 

radar image can greatly affect the estimates of rainfall. Although this led 

to overestimation of rainfall in some instances, the heaviest rainfall 

within a storm was frequently quite well estimated through using 

multiple Z-R relationships. Because a single Z-R relationship was applied 

to an entire storm in this project, this result suggests the need to adjust 

the selection of a Z-R relationship on an even smaller scale than just 

individual storms.

111



There is clearly some usefulness to estimating rainfall using radar 

observations, particularly over large enough temporal and spatial scales. 

However, at smaller scales, calibrations are less accurate. This is also 

supported by strong variability in the accuracy of rainfall estimates, 

even when applying multiple Z-R relationships. It is clear that variability 

in Z-R relationships occurs not only from one storm to another but within 

a single storm. It is unclear how much of the error noted in Chapter 4 

was due to a poor choice of Z-R relationship at some gages, even 

following the adjustment, and how much was due to other factors that 

may also be highly variable such as wind drift.

It may be useful to derive an appropriate Z-R relationship from 

model output, but that alone is also insufficient with current models to 

select different Z-R relationships within a single storm. Without better 

observation networks, it is likely that conceptual models will need to be 

applied within a single storm to vary the Z-R relationship and maintain 

the heaviest rainfall rates near the core of the storm while not 

overestimating rainfall in other parts of the storm.

The poor performance in some instances using multiple Z-R 

relationships was likely due to variability in drop size distribution with a 

single storm and not due to the poor choice of a hail cap or thresholds 

that discriminate between the selection of Z-R relationships. Instead, 

drop size distribution varies from one part of a storm to another, and the 
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influence of hail contamination would be most likely only near the core 

of the storm.

There are clear differences between using a single Z-R relationship 

throughout an entire radar image and using multiple Z-R relationships 

for different places in a radar image. Although it is likely that there is 

some use in varying the Z-R relationship within a single radar image, 

more work is needed to refine the selection of a Z-R relationship. In 

particular, it is probably necessary to vary the selection of a Z-R 

relationship not just from one region of a radar image to another or one 

storm to another but also within a single storm.

Although it is evident that the algorithm developed to apply 

multiple Z-R relationships within a single domain needs to be defined, 

the concept was successfully demonstrated. The algorithm did 

objectively identify regions where different Z-R relationships could be 

applied. Additionally, it was demonstrated that using mutliple Z-R 

relationships within a single domain can yield significantly different 

rainfall rates and totals than would be produced by using a single Z-R 

relationship.
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Appendix A. Z-R Relationships

A variety of Z-R relationships exist for estimating rain rates from 

radar reflectivity. Radar reflectivity is usually considered to be related to 

rain rates by an equation of the form of equation (2.1). The variations in 

Z-R relationships occur due to different types of storms and different 

physical processes in storms as well as differing environmental 

conditions, which cause variations in drop size distributions.

Typically radar reflectivity is given in decibels of power or dBZ. 

This can easily be converted to Z and substituted into a suitable Z-R 

equation. Many pairs of A and b values have been empirically 

determined. These values are used for a particular type of precipitation 

or may be specific to a geographic region.

In addition to the Z-R relationships that are used operationally and 

described in section 2.2, additional Z-R relationships have been 

developed for a variety of precipitation types. Blanchard (1953) 

developed an equation in (A.1)

 

Z = 31R1.71                                               (A.1)

for orographically induced precipitation. Additional Z-R relationships for 

convective and orographic precipitation have since been developed.

Other Z-R relationships have been developed for use in different 

environmental conditions. One such attempt relates surface dewpoint 
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(Td) and relative humidity (RH) to the values of A and b in a Z-R 

relationship (Cataneo 1969). This implicitly takes into account surface 

temperature because relative humidity is present in the equation. The 

equations for calculating A and b are in equations (A.2) and (A.3) 

respectively.

A=1.372Td −4.702RH 571                            (A.2)

 

b = - 0.00444 RH( ) +1.776                                  (A.3)

Additionally, Z-R relationships have been proposed that adjust A 

and b based on surface temperature (Wexler and Atlas 1963). Equation 

(A.4)

 

Z = 295R1.45                                          (A.4)

is a Z-R relationship to be used at a surface temperature of 0ºC and 

equation (A.5)

 

Z = 210R1.6                                           (A.5)

is for a surface temperature of 18°C.

It has been noticed that there is little change in suitable Z-R 

relationship when scanning anywhere between the cloud base and the 

melting level and Caton (1964) used equation (A.6)

 

Z = 240R1.3                                           (A.6)

as a suitable Z-R relationship. Equation (A.7)

 

Z = 263R1.3                                         (A.7)

was determined by Gorelik et al. (1967) in a similar study.
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Additional Z-R relationships were determined by Diem (1966) for a 

variety of geographic locations and also in different seasons. Imai (1960) 

calculated Z-R relationships for differing storm types in Tokyo, Japan. 

These show variation based on season, location, and storm type can 

significantly affect the choice of Z-R relationship.

Jones (1955) calculated Z-R relationships for a variety of storm 

types in central Illinois. These include equations for all types of rain in 

equation (A.8), thunderstorms in equation (A.9), showery rain in 

equation (A.10), and continuous rain in equation (A.11).

 

Z = 396R1.35                                     (A.8)

 

Z = 486R1.37                                     (A.9)

 

Z = 380R1.24                                      (A.10)

 

Z = 313R1.25                                      (A.11)

Although many other Z-R relationships have also been derived 

through empirical methods, this presents a good survey of some that 

have been presented in literature for a variety of conditions. This shows 

that choices of A and b vary greatly depending on the characteristics of 

precipitation, temperature, and location and there is a continuum of 

possible relationships.
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Appendix B. Radar Errors

A wide variety of radar errors may occur under and limit the 

accuracy of rainfall estimates. Many of the common errors will be 

described in this section along with techniques for detecting the errors 

and mitigating their effects.

B.1. Bright Band

Austin and Bemis (1950) presented an early explanation of the 

“bright band” sometimes observed by radar when observing stratiform 

precipitation. Because the complex index of refraction is greater for 

liquid water than for ice, an ice crystal with the same scattering cross-

section as a water droplet will have greater reflectivity. However, 

because of the typical shape of ice crystals, when the crystals begin to 

melt and become covered with water, they have a larger scattering 

cross-section than a typical raindrop, but have the complex index of 

refraction of liquid water. The result is greater radar reflectivity than for 

either the ice crystals or completely liquid raindrops. Bright banding is 

explained by the melting of ice crystals and coalescence of melting 

crystals to produce particularly high reflectivity. The melting layer is 

observed as a band when scanning at a single tilt because the beam 

rises as it becomes more distant from the radar and intersects the 

122



melting layer at a nearly constant height above the radar level. Ramana 

Murty et al. (1965) stated that the reflectivity profile beneath the bright 

band is nearly constant.

During stratiform precipitation events in California, the 0°C layer 

in the atmosphere was observed and was about 200 m thick according 

to Stewart et al. (1984). The greatest concentration of ice crystals was 

observed near the -5°C level with the crystals melting by around the 

time the temperature reached 2°C. The absorption of latent heat to 

change the phase of water from solid to liquid cooled the temperature of 

the air enough to maintain an isothermal layer around 0°C. Klaassen 

(1988) found that a lesser concentration of ice crystals increases the 

intensity of the bright band and that deeper and wider bright banding 

typically occurs during heavier stratiform rain events. Huggel et al. 

(1996) noted that the bright band is less intense when there are many 

small raindrops and no large raindrops. Greater intensity of the bright 

band is observed when there are fewer small raindrops but some large 

raindrops. Accounting for the bright band can improve rainfall estimates 

by 20% to 40%.

Fabry and Zawadzki (1995) observed that for rainfall reflectivity at 

or below 20 dBZ, reflectivity in the bright band is only about 8 dBZ 

stronger. However, for rainfall reflectivity above 20 dBZ and near 30 

dBZ, the bright band may be as much as 13 dBZ stronger. Reflectivity 
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below the level of the bright band is only about 2 dBZ stronger than 

reflectivity immediately above the bright band where only ice crystals 

are present. The aggregation and coalescence of melting ice crystals 

was a small contributor in the increase of reflectivity beneath the bright 

band.

Gourley and Calvert (2003) proposed an algorithm to detect the 

bright band based on radar reflectivity characteristics and Rapid Update 

Cycle (RUC) model output. The algorithm considers all tilts of the radar 

and searches for points where reflectivity immediately above and below 

the point decreases by at least 20%. Additionally, the reflectivity must at 

least be 30 dBZ to constitute a bright band. If model output indicates 

that the 0°C level is not at least 1 km above the height of the radar, the 

algorithm will not detect a bright band. The algorithm searches within a 

range of 10 km to 30 km from the radar site. Bright band detection is 

based on average reflectivity around the entire radar. Additionally, 

heights of the bright band are averaged over 30 minutes to produce 

better output. The algorithm only detects bright banding and does not 

make an attempt to remove or correct for bright banding.

Smith (1986) stated that the bright band can produce significant 

errors in the estimates of rainfall from radar reflectivity and proposed an 

algorithm to limit the error. In the algorithm, the bright band is detected 

through scanning at multiple tilts. The bright band is detected by the 
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algorithm as a peak in radar reflectivity at the same height above the 

radar level when observed at multiple tilts. Additional processing is 

performed to minimize false positives when detecting potential bright 

bands. The intensity of the bright band is determined by dividing the 

reflectivity within the bright band by the reflectivity measured below the 

bright band.

Correcting the bright band in the algorithm involves calculating 

values for the intensity of the bright band and the power profile of the 

radar beam. These calculations were simplified in the algorithm because 

it is designed for limited computing resources. Based on these two 

values, a correction factor was calculated and applied every 15 minutes.

B.2. Anomalous Propagation

Battan (1973) described anomalous propagation as occurring 

when the path of a radar beam is greatly altered from a path during 

typical atmospheric conditions. Superrefraction has the effect of bending 

a radar beam toward the surface and subrefraction bends a radar beam 

away from the surface. As shown by Lennon and Thomas (1970), Atlas 

(1959) and others, superrefraction may cause the radar beam to 

intersect the surface. When this process occurs, as Battan (1973) 

describes, distant ground targets may greatly increase in radar imagery.
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Because of the strong reflectivity sometimes associated with 

anomalous propagation, it can cause significant issues in using radar 

data to estimate rainfall. Woodley et al. (1975) found anomalous 

propagation severe enough in some instances as to completely discard 

cases when performing an intercomparison of radar and gage 

measurements of rainfall. Moszkowicz et al. (1994) stated that in 

unfiltered radar images, anomalous propagation represented 59% of 

rainfall estimated during one month and 97% of estimated rainfall 

during another month as detected by a radar in Poland.

Moszkowicz et al. (1994) developed a statistical method using 

Bayes' Theorem to detect anomalous propagation. Five parameters were 

used at a given location, which were derived from the angle of 

maximum reflectivity, the highest angle where an echo was detected, 

the maximum reflectivity detected, the strongest horizontal gradient in 

reflectivity, and the height of the echo top above the radar level. 

Although Moszkowicz et al. (1994) state that temporal characteristics of 

echoes were useful in subjectively determining anomalous propagation, 

it was not incorporated into the algorithm.

The operational WSR-88D algorithm (Fulton et al., 1998) detects 

anomalous propagation by examining the vertical continuity of echoes. 

If sufficient vertical continuity is not present, an entire scan elevation 

may be ignored. Steiner and Smith (2002) consider not only the vertical 
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structure of radar echoes but also the horizontal structure and variability 

of echoes when detecting anomalous propagation. Lakshmanan et al. 

(2007a) implemented a quality control algorithm designed to remove 

anomalous propagation and other unwanted echoes in the w2qcnn 

algorithm in the Warning Decision Support System – Integrated 

Information (Lakshmanan et al., 2007b). The algorithm uses a neural 

network and examines the lowest two tilts of radar data using values 

calculated based on reflectivity, velocity, and spectrum width along with 

other horizontal and spatial characteristics.

B.3. Beam Filling

Rosenfeld et al. (1992) observed that in storms with sharp 

reflectivity gradients, if only part of a radar beam was filled, rainfall 

would be overestimated in some areas. However, this also usually 

results in underreporting the maximum reflectivity, due to sampling with 

weaker reflectivity. Additionally, at a long range, reflectivity is 

underestimated frequently because the radar beam is above part or all 

of the strongest reflectivity. Klazura et al. (1999) observed that rainfall 

observed at distant ranges associated with precipitation that was likely 

convective in nature was typically overestimated. However, precipitation 

that was likely stratiform in nature was underestimated at all ranges, 

possibly due to the radar beam being partially or completely above the 
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strongest reflectivity. Operationally, the WSR-88D radars can attempt to 

correct for underestimation of beam hight at distant ranges from the 

radar (Fulton, et al. 1998).

Seo et al. (2000) proposed an algorithm for using statistical 

properties of the vertical structure of observed reflectivity to adjust 

estimated rainfall rates in areas where the radar beam is above the 

strongest reflectivity. This algorithm also determines the maximum 

distance at which radar estimates of rain rate is reliable, beyond which 

overshooting occurs.

B.4. Beam Blockage

In regions of complex terrain, the radar beam may be partially or 

completely blocked. The effects of beam blockage are significant 

enough that the operational rainfall estimation algorithm used by WSR-

88D radars applies a correction factor or completely discards data at 

some elevations for some locations if beam blockage is significant 

enough (Fulton et al., 1998).

Dinku et al. (2002) developed an algorithm to attempt to correct 

for partial and complete beam blockage. The initial step of the algorithm 

is to account for attenuation of the radar beam by applying an 

appropriate correction factor. Partial beam blockage is addressed by 

determining the portion of the beam that is blocked and using the 

128



possibly unrealistic assumption that scattering would be uniform 

through the entirety of the beam. The algorithm then transforms the 

data from a polar grid relative to the radar location to a Cartesian grid. A 

correction factor is computed for points where beam blockage is 

occurring based on a vertical reflectivity profile computed using nearby 

points where beam blockage is not occurring. Additional processing is 

performed following the corrections for beam attenuation and blockage 

in the algorithm described.

In addition to other methods for attempting to compensate beam 

blockage such as the use of satellite data, work has also been done to 

adopt different scanning strategies to detect precipitation. Brown et al. 

(2002) developed a scanning strategy for the Missoula, Montana (KMSX) 

WSR-88D radar, which is located on a mountain. Because valleys receive 

poor coverage when using a typical scanning strategy, a customized 

scanning strategy was developed. The volume coverage pattern would 

scan at lower angles than 0.5°, which is the lowest tilt in a typical 

scanning strategy. The volume coverage pattern included negative tilts 

to detect echoes in valleys.
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Appendix C. Interpolation Schemes

Although there are multiple methods to downsample or upsample 

gridded data, variations of interpolation schemes are not of interest to 

this study. However, a variety of methods exist to interpolate between 

irregularly spaced data points such as rain gage networks to produce 

gridded output. A number of methods were used to interpolate rain gage 

data including kriging, inverse distance weighting (IDW), natural 

neighbor interpolation, and spline interpolation.

Kriging and IDW are similar in that they estimate a value at each 

grid point by averaging neighboring grid points based on a weighting 

function. IDW weights observed values based entirely on their distance 

from the grid point assigning less weight to more distant observations. 

Instead of using all available observations, a limit may be placed to only 

consider observations within a set distance of a grid point or to only 

consider a set number of observations. IDW produces a deterministic 

solution and grid values may not match observed values. Additionally, 

IDW constrains the interpolated values to within the range of observed 

values.

Kriging uses a semivariogram to calculate the spatial variability of 

the data that are being interpolated. In the semivariogram, variance of 

data increases until the sill is reached, at which point the variance stops 
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increasing. The semivariogram is then used to interpolate data between 

points. Kriging is often known as optimal interpolation. Parameters such 

as distance from data points at which the sill begins is often determined 

empirically. In addition to interpolating the data, kriging also produces 

an output variance field, which is a measure of the quality of the 

interpolation.

Another interpolation scheme of interest is spline interpolation. 

Unlike predicted grid point values computed through IDW and kriging, 

spline interpolated values match actual observed values. Splines are 

created over small areas and joined together to produce a continuous 

smooth surface. Like IDW, spline interpolation produces a deterministic 

solution. However, unlike IDW, spline interpolated values may be outside 

the range of observed values. In addition to computing a field with 

interpolated values of the data, a field expressing the maximum error of 

the interpolation can also be computed.

The natural neighbor interpolation scheme is based off Thiessen 

polygons and begins by computing Thiessen polygons for the observed 

values. Then Thiessen polygons are compoted with the observed values 

and the grid point. The polygon for the computed grid point is overlaid 

with the original polygons and observations are weighted based on the 

portion of the polygon area within each of the original polygons. Maxima 

and minima are only located at observations and grid points do match 
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observed values. The interpolated values are constrained to the range of 

observed values. Natural neighbor interpolation produces a 

deterministic solution.

Each of these interpolation schemes produces different grid point 

values and the output may be very different depending on the data 

values and spatial distribution of observations. It is unclear which 

interpolation scheme provides the best estimate of the spatial 

distribution of rainfall. However, for the purposes of this work, kriging 

was chosen for interpolating the data.
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Appendix D. Radar Imagery from Cases

Radar imagery from the eight cases observed by the USDA-ARS 

network are shown here in this appendix. The purpose of this is to 

provide the reader with a greater familiarity of the events. Brief 

meteorological descriptions of the cases are provided in Section 3.4. 

Images are selected from the middle of an event. For example, a rainfall 

event beginning at 10 UTC and lasting until 11 UTC will have an image 

from 1030 UTC.
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Figure D.1: A radar image during the May 19, 2004 at 07 UTC event is shown. 
The Goodwater Creek catchment is outlined in white and county boundaries 
are outlined in gray.
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Figure D.2: A radar image during the July 6, 2004 at 13 UTC event is shown. 
The Goodwater Creek catchment is outlined in white and county boundaries 
are outlined in gray.
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Figure D.3: A radar image during the August 4, 2004 at 08 UTC event is 
shown. The Goodwater Creek catchment is outlined in white and county 
boundaries are outlined in gray.
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Figure D.4: A radar image during the August 4, 2004 at 09 UTC event is 
shown. The Goodwater Creek catchment is outlined in white and county 
boundaries are outlined in gray.
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Figure D.5: A radar image during the August 26, 2004 at 06 UTC event is 
shown. The Goodwater Creek catchment is outlined in white and county 
boundaries are outlined in gray.
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Figure D.6: A radar image during the August 26, 2004 at 07 UTC event is 
shown. The Goodwater Creek catchment is outlined in white and county 
boundaries are outlined in gray.
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Figure D.7: A radar image during the August 27, 2004 at 18 UTC event is 
shown. The Goodwater Creek catchment is outlined in white and county 
boundaries are outlined in gray.
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Figure D.8: A radar image during the October 18, 2004 at 10 UTC is shown. 
The Goodwater Creek catchment is outlined in white and county boundaries 
are outlined in gray.
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Appendix E. Fourier Transform Math

The Fourier Transform (FT) decomposes a signal that is the result 

of adding together many signals of different frequencies that maintain 

their power throughout the duration of the signal. Each component 

signal is a wave and the original signal is the result of constructive and 

destructive interference. The original signal can be reconstructed 

through the Inverse Fourier Transform (IFT).

There are multiple forms of the FT and many algorithms exist for 

performing the FT. One important distinction is between the Continuous 

Fourier Transform (CFT) and the Discrete Fourier Transform (DFT). The 

CFT operates on a continuous signal and wave numbers of component 

signals need not be discrete. The DFT, however, operates on a signal 

that is sampled periodically and component signals have discrete wave 

numbers. Algorithms have been devised for reducing the complexity 

involved in calculating the DFT. One notable algorithm is the Fast Fourier 

Transform (FFT) because it is much faster than other algorithms at 

computing the FT over large domains.

The FT transforms a signal from the spatial domain to the 

frequency domain. The domain may be of more than one dimension. 

Some image processing and compression algorithms rely on the FFT and 

similar algorithms and work in two dimensions. The transformation is 
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from (x,y) coordinates to (u,v) coordinates where x and y are 

coordinates in space and u and v are wave numbers.

One important property between the spatial and frequency 

domains is the relationship between multiplication and convolution. 

Multiplication in the spatial domain is equivalent to convolution in the 

frequency domain. Multiplication in the frequency domain is equivalent 

to convolution in the spatial domain. This property is known as the 

Convolution Theorem. Some operations, including some forms of 

filtering, can be easily implemented using multiplication in the 

frequency domain but may not be easily implemented using convolution 

in the spatial domain.

In the context of this discussion about the FT, f(x) and f(x,y) refer 

to functions in the spatial domain. The notations F(u) and F(u,v) are the 

result of performing the FT on the functions, respectively, and are in the 

spatial domain. Additionally, (x) and (x,y) are coordinates within the 

spatial domain. However, (u) and (u,v) are coordinates within the 

frequency domain and represent wave numbers.

Forms of the CFT and inverse CFT (ICFT) can be derived from 

simple equations to demonstrate how they are typically computed and 

how they contain wave equations. For the following equations, f(x) 

represents the signal within the spatial domain at position x. Also, F(u) 

represents the power within the frequency domain of wave number u. 
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The derivation of the CFT and ICFT will then be applied to discrete forms 

of the FT and IFT.

The CFT in a single dimension can be represented as the 

exponential function shown in equation (E.1). Although this is 

mathematically correct, it is not particularly instructive as to the 

implementation or behavior of the transform.

F u=∫
−∞

∞

f xe−2jux dx                               (E.1)

In the equation, j is used to represent an imaginary number. By 

using Euler's Formula, as shown in equation (E.2), it is possible to 

simplify equation (E.1) to a form that includes sinusoidal functions 

instead of an exponential function and is shown in equation (E.3).

e j
=cos jsin                                  (E.2)

F u=∫
−∞

∞

f x [cos −2ux  jsin −2ux ] dx                (E.3)

Additional simplification may be performed using the knowledge 

that cosine is an even function and sine is an odd function. These 

simplifications can be expressed in equations (E.4) and (E.5), 

respectively. The resulting equation, when substituting into (E.3) is 

shown in equation (E.6), which is a typical form for the CFT.

cos −=cos                                    (E.4)

sin−=−sin                                  (E.5)
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F u=∫
−∞

∞

f x [cos 2 ux− jsin 2ux  ]dx                  (E.6)

Equation (E.7) is a form of the one-dimensional ICFT, which can be 

simplified in a similar method to the CFT simplification. After simplifying 

the equation, a typical form of the ICFT is expressed in equation (E.8).

f x =∫
−∞

∞

F ue2jux du                                (E.7)

f x =∫
−∞

∞

F u [cos 2ux jsin 2ux ]du                   (E.8)

Mathematically, the ICFT and CFT are useful equations and 

demonstrate the properties of the FT. They are not, however, 

particularly practical applications of signal processing. Signals are not 

typically analyzed in continuous form. Instead, signals are sampled 

discretely to produce a representation that, if sampled frequently 

enough, may resemble the structure of the original signal. For discretely 

sampled signals, the DFT and inverse DFT (IDFT) are used. The 

equations are similar in nature to those used for the CFT and ICFT. When 

representing equations for the DFT and IDFT, M is used to represent the 

number of samples in a discretely sampled one dimensional signal. The 

signal begins at position 0 and ends at position M-1. For a two 

dimensional signal, N is used to represent the number of samples in the 

other direction. The signal begins at position 0 and ends at position N-1.
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The DFT and IDFT in a single dimension can be derived in a similar 

way as to the CFT and ICFT. Because the steps are largely the same, 

only the initial equations and then the final form will be presented. The 

initial form of the DFT is presented in equation (E.9). Through the 

process of using Euler's Formula and using properties of the sine and 

cosine, the resulting equation in (E.10) is presented.

F u= 1
M
∑
x=0

M−1

f x e
−2jux

M                               (E.9)

F u= 1
M
∑
x=0

M−1

f x [cos  2ux
M − jsin  2ux

M ]              (E.10)

Similarly, a typical form of the IDFT in a single dimension can be 

derived using the same process. The initial form of the IDFT is presented 

in equation (E.11). Simplification yields a more familiar form in equation 

(E.12).

f x =∑
u=0

M−1

F ue
2jux

M                               (E.11)

f x =∑
u=0

M−1

F u[cos  2ux
M  jsin 2ux

M ]               (E.12)

Frequently, in computers, the pure real and pure imaginary 

components of a complex number may be stored separately. As a result, 

calculations of the pure real and pure imaginary parts of the output of 

the FT may be computed independently. In order to calculate this, f(x) 
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will be split into two functions, a(x), which will be referred to as a, and 

b(x), which will be referred to as b. Therefore, f(x) can be defined by 

equation (E.13) and substituted into equation (E.10) to produce equation 

(E.14).

f x =abj                                     (E.13)

F u= 1
M
∑
x=0

M−1

[acos  2ux
M −ajsin  2ux

M bjcos  2ux
M −bj2 sin 2 ux

M ] (E.14)

By simplifying equation (E.14), it is easy to split the equation into 

pure real and pure imaginary parts. Equation (E.15) is the pure real form 

of the FT and (E.16) is the pure imaginary part of the FT. Equivalent 

steps can be performed on the IDFT from equation (E.12) and 

substituting equation (E.17) to produce the pure real part of the IDFT in 

equation (E.18) and the pure imaginary part of the IDFT in equation 

(E.19).

F ru =
1
M
∑
x=0

M−1

[acos 2 ux
M bsin 2ux

M ]                 (E.15)

F iu=
1
M
∑
x=0

M−1

[−ajsin 2ux
M bjcos 2ux

M ]               (E.16)

F u=abj                                     (E.17)

f rx =∑
u=0

M−1

[acos 2ux
M −bsin 2ux

M ]                   (E.18)
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f ix =∑
u=0

M−1

[ajsin  2ux
M bjcos 2 ux

M ]                  (E.19)

For image processing, typically the FT is evaluated in two 

dimensions. The equations for the DFT and IDFT will be shown after 

being split into pure real and pure imaginary parts. The equations are 

very similar in nature to those of the DFT and IDFT in one dimension 

with only very minor modifications. The pure real and pure imaginary 

parts of the DFT are shown in equations (E.20) and (E.21) respectively. 

For the IDFT, pure real and pure imaginary parts are shown in equations 

(E.22) and (E.23).

F ru , v = 1
MN

∑
x=0

M−1

∑
y=0

N−1

[acos 2 ux
M


vy
N bsin2 ux

M


vy
N ]       (E.20)

F iu , v= 1
MN

∑
x= 0

M−1

∑
y=0

N−1

[−ajsin 2 ux
M


vy
N bjcos2 ux

M


vy
N ] (E.21)

f rx , y=∑
u=0

M−1

∑
v=0

N−1

[acos 2ux
M


vy
N −bsin 2 ux

M


vy
N ]        (E.22)

f ix , y =∑
u=0

M−1

∑
v=0

N−1

[ajsin 2 ux
M


vy
N bjcos2ux

M


vy
N ]        (E.23)

Although derivations for many of these equations are not explicitly 

presented here, they are very similar to the derivations that have been 

performed earlier in this chapter. The output of the FT is complex and 
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any processing should be performed on both the pure real and pure 

imaginary components of the output. As the above equations show, both 

the real and imaginary components of the output of the FT are 

necessary to properly recombine the signal into the spatial domain using 

the IFT. When recombining an image into the spatial domain, it is only 

necessary to use equation (E.22). It is not necessary to use equation 

(E.23) and recombine the imaginary portion of the signal.
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Appendix F. Spectral Analysis Algorithm

This appendix contains a detailed description of the algorithm 

used for spectral analysis. It was originally submitted to the 88th Annual 

Meeting of the American Meteorological Society and the relevant details 

contained within have not been modified since.
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