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ABSTRACT
Extreme precipitation and temperature have large socioeconomic and human health impacts. This study aims to analyse the 
projected changes of extreme precipitation and temperature indices at 1.5°C and 2°C of warming over the Mississippi River 
Basin (MRB) under Shared Socio-economic pathways (SSP) 2-4.5 and SSP5-8.5. We used a technique named bias correction 
constructed analogues with quantiles mapping reordering (BCCAQ) to downscale daily precipitation, minimum and maximum 
temperature from a set of 12 Coupled Models Intercomparison Project phase 6 (CMIP6) over MRB. The changes in extreme 
precipitation and temperature indices such as very heavy rainfall (R95p), warm days (TX90p), and warm spell duration (WSDI) 
are sensitive to warming targets and emission scenarios. Results indicate that both warming targets are expected to exacerbate 
R95p whilst intensifying extreme precipitation and temperature as a whole except for cumulative wet days (CWD) (many parts 
of MRB are experiencing reduced CWD at both warming targets and scenarios). However, the rainfall intensity (SDII) is more 
reduced under SSP5-8.5 compared to SSP2-4.5 with an additional 0.5°C highlighting the sensitivity of SDII to the emission 
scenario. An additional 0.5°C (from 1.5°C to 2°C) climate warming is expected to: (1) increase TX90p and WSDI by 50% under 
SSP2-4.5 and nearly 100% under SSP5-8.5 over much of the MRB subregions, (2) reduce extreme precipitation in the centre of the 
MRB. Uncertainty superimposes on the magnitude of changes with more than 75% contribution from internal climate variabil-
ity to total variance, nearly 20% from climate models, and marginal contribution from climate scenarios. The predominance of 
natural climate variability underscores a decreased predictability in future extreme precipitation and extreme temperature due 
to anthropogenic forcings, particularly at the regional scale. So, a deep understanding of what drives climate and its variability 
on a local and regional scale is critical for future generations of climate models and climate projections assessment. However, 
climate warming will pose serious challenges to water availability over the MRB, with consequences for agriculture, crop yields, 
and ecosystems.
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1   |   Introduction

There is international agreement that the 2°C surface tempera-
ture warming above preindustrial level carries with it an exces-
sive risk for human activities, and that there is a need to target 
global warming below 1.5°C (Rogelj et al. 2015). According to 
the International Panel on Climate Changes (IPCC 2022) Sixth 
Assessment Report (SAR), continuous warming is already af-
fecting each inhabited region across the world. If no coercive 
mitigation plan is implemented by the main international play-
ers, the global mean temperature will exceed the 1.5°C set by 
2015 Paris agreement in the next two decades (Masson-Delmotte 
et al. 2021), with a consequent increase in the number of extreme 
weather events, such as flooding, droughts and heatwaves.

Over the US, many studies (Peterson et  al. 2013; Akinsanola 
et al. 2020; Anderson et al. 2010, 2015; Dommo et al. 2024) have 
underscored the increases of extreme precipitation and tempera-
ture over the recent past decades. Expectations from projected 
changes of precipitation (Zhao et al. 2023; Akinsanola et al. 2020; 
Jong et al. 2023) and temperature (Aerenson et al. 2018) related 
extreme indices point to an overall increase owing to climate 
warming. Although previous studies provided valuable insights 
into the projected extreme temperature and precipitation indi-
ces, few of them have considered the different Global Warming 
Levels (GWLs) which are crucial for assessing the impact of lim-
iting global warming below 1.5°C compared to 2°C. In addition, 
none of them have assessed the uncertainty associated with 
projected changes which is important for resources allocation 
and long-term mitigation plan. Then, the US lacks a significant 
assessment of projected climates' extreme indices considering 
GWLs and the associated uncertainties. Assessing changes 
under GWLs and their uncertainty is crucial to avoid allocat-
ing resources or mitigation policies by targeting areas which are 
not of the greatest need. The 1 September 2021 record breaking 
rainfall over the northeast United States inundated densely pop-
ulated areas and caused more than $20 billion in losses (Smith 
et al. 2023). So, there is increasing concern about whether the 
existing infrastructure is at risk due to a changing climate.

On a regional scale, detecting and projecting changes in precipita-
tion remain a challenge and uncertain (Kharin et al. 2013; Pfahl 
et al. 2017; Xie et al. 2015) partly due to limitations coming from 
coarse gridded global climate projections. However, even if the 
concern regarding model resolution were resolved, other sources 
of uncertainties that generally account for future projection are 
(Hawkins and Sutton 2009, 2010): (1) internal variability (2), model 
uncertainty and (3) scenario uncertainty. The latter uncertainty 
generally occurs when assessing future projections from climate 
scenarios. Assessing uncertainty in projected extreme indices can 
help avoid large costs associated with insufficient or unnecessar-
ily rigorous adaptation (Eisenack and Paschen 2022). Regions like 
the Mississippi river basin (MRB) are highly vulnerable to cli-
mate fluctuations due to its significant agricultural and livestock 
production (Foley et al. 2004). The present study investigates the 
benefits of mitigating the average temperature to 2°C or less by 
computing a set of extremes precipitation and temperature indices 
and investigating how they change across two warming scenarios 
and to what extent there can be confidence in the changes in order 
to inform research and mitigation choices, since climates extreme 
have more impact on human and natural ecosystems.

Therefore, in this study, we seek to answer the questions: (1) how 
do precipitation and temperature related extreme indices change 
over the MRB under 1.5°C and 2°C global warming scenario? (2) 
what are the magnitudes of the uncertainties associated with the 
projected changes? (3) Could the simulated changes be associated 
with anthropogenic climate forcings? To this end, we utilise a set 
of 12 high-resolution downscaled climate models under Shared 
Socio-Economic Pathways (SSPs) 2-4.5 and SSP5-8.5 to assess the 
projected changes of four precipitation and five temperature re-
lated indices (Table 1) from the Expert Team on Climate Change 
Detection and Indices (ETCCDI) under 1.5°C and 2°C global 
warming over the MRB and its corresponding sub-basins. This 
suite of indices gives a rich picture of climates relevant to differ-
ent sub-basins over MRB. The high-resolution downscaled data 
used in this study are the output of bias correction constructed 
analogues with quantiles mapping reordering (BCCAQ) which 
has been shown to efficiently removing biases and reproducing 
event scale spatial gradients. In addition, for precipitation, the 
selected indices address both minimum and maximum tempera-
ture behaviour. The uncertainties are also evaluated following 
the methodology described below. The manuscript is organised 
as follows: Section 2 represents the data used; Section 3 provides 
a description of the different methods used in this work. Results 
are presented in Section 4. The discussion of our results is pro-
vided in Section 5 followed by the conclusion in Section 6.

2   |   Data and Study Area

2.1   |   Data

2.1.1   |   CMIP6 Simulations

The modelled daily dataset (precipitation, near surface aver-
age, minimum and maximum temperature), used in this study 
is from the Coupled Model Intercomparison Project Phase 6 
(CMIP6, Eyring et al. 2016). These data are obtained from the 
outputs of 12 CMIP6 models spanning from 1950 to 2099 (see 
Table S1 for spatial resolution, institutions, model names, and 
variables). CMIP6 represents an updated version of previous it-
erations such as CMIP3 (Meehl et al. 2007) and CMIP5 (Taylor 
et  al.  2012) with changes in model configuration including 
model resolution, physical processes, and atmospheric chemis-
try treatment. This study assesses the changes in four extreme 
precipitation and five temperature extreme indices under 1.5°C 
and 2°C global warming above preindustrial level, using two 
shared socio economic scenarios (O'Neill et  al.  2016): (1) the 
middle of the road scenario (hereafter, SSP2-4.5) considered as 
the moderate scenario which assumes that climate protection 
measures are being taken, and (2) the fossil fuel development 
scenario (hereafter, SSP5-8.5) which is the worst-case climate 
scenario based on enhanced global economic and high percent-
age of coal and energy-intensive lifestyle worldwide.

2.1.2   |   Observational Dataset

The daily dataset with 0.25° × 0.25° spatial resolution for the pe-
riod 1950–2010 provided by Princeton University—Department 
of Civil and Environment Engineering (https://​rda.​ucar.​
edu/​datas​ets/​d3140​00/​) was used to run the bias correction 
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constructed analogues with quantiles mapping reordering. It is 
a global meteorological forcing dataset for land surface model-
ling and can be used to drive models (Sheffield et al. 2006). The 
dataset is a combination of National Centres for Environmental 
Predictions/National Centre for Atmospheric Research (NCEP/
NCAR, Sheffield et al. 2006) reanalysis with global observation-
based datasets. Daily minimum and maximum temperature, as 
well as daily precipitation from the period 1948–2010 can be re-
trieved from Research Data Archive (last access 12 August 2025, 
https://​rda.​ucar.​edu/​datas​ets/​d3140​00/​).

2.2   |   Study Area

In this study, we focused on the MRB (Figure  1). It drains 
the fourth-largest river in the world, covering almost 41% of 
the conterminous US and encompasses 31 states (Muller and 
Schaetzl  1998). Economically, MRB is of national importance 
because of its potential in terms of hydroelectric power gener-
ation, agricultural and food productivity (Foley et  al.  2004), 
transportation, and services. The river is joined by many other 
rivers and forms six main sub-basins such as: Missouri River 

basin (MO), Arkansas River basin (Ark), Upper MRB (UM), L 
MRB (LM), Ohio River basin (Ohio), and Tennessee River Basin 
(Ten). A recent study (Dommo et  al.  2024) highlighted a de-
creasing trend in extreme precipitation over the MRB, such as 
heavy and very heavy precipitation found mostly in Ohio, LM, 
UM, Ten, and Ark, where the temperature components (mean, 
minimum, and maximum) are significantly increasing in con-
cert with a warming climate. In addition to surface elevation 
and large-scale atmospheric and oceanic circulation (Dommo 
et  al.  2024), extreme precipitation over the MRB is driven by 
moisture flux from the Gulf of Mexico. This intense moisture 
flux contributes to approximately 94% of the total precipitation 
(Bishop et al. 2019) over the Gulf of Mexico.

3   |   Materials and Methods

3.1   |   Bias Correction and Downscaling Technique

To make the simulation useful for an impact study at the 
local and regional level, we utilised an approach referred 
to as bias correction constructed analogues with quantiles 

TABLE 1    |    List of temperature and precipitation indices used in this study.

Indices Name Definition Unit

R20mm Number of very heavy 
precipitation

Let RRij be the daily precipitation amount on day i in period 
j. Count the number of days where RRij ≥ 20 mm

days

CWD Cumulative wet or wet spell Maximum number of days with precipitation ≥ 1 mm in a given period days

SDII Simple daily intensity index Average rainfall from wet days. Let RRwj be the daily rainfall 
amount on wet-day, PRCP ≥ 1 mm in period j. If W represents 
number of wet days in j, then: SDIIj is the total precipitation 

of wet for the period j divided by the number of wet days

mm/day

R95p Very wet days total 
precipitation

Annual total PRCP when RR > 95th percentile. Let RRwj be the 
daily precipitation amount on a wet day w (RR = 1.0 mm) in period 
i and let RRwn 95 be the 95th percentile of precipitation on wet 

days in the reference period. If W represents the number of wet 

days in the period, then: R95p =
W
∑

w= 1

where RRwj > RRwn95

mm

ETR Extreme temperature range Let TXx be the daily maximum temperature in month k and 
TNn the daily minimum temperature in month k. The extreme 

temperature range each month is then: ETRk = TXxk − TNnk

°C

TXx Maximum value of daily 
maximum temperature

Let TXx be the daily maximum temperatures in month 
k, period j. The maximum daily maximum temperature 

each month is then TXxkj =max
(

TXxkj
)

°C

TNn Minimum value of daily 
minimum temperature

Let TNn be the daily minimum temperatures in month 
k, period j. The minimum daily minimum temperature 

each month is then TNnkj =min
(

TNnkj
)

°C

TX90p Warm days Number of days when TX  > 90th percentile: Let TXij be 
the daily maximum temperature on day i in period j 

and let TX  90 be the 90th percentile for the given period. 
Count the number of days where TXij > TX90

days

WSDI Warm spell duration Annual count of days with at least 6 consecutive days when TX  > 90th 
percentile: Let TXij be the daily maximum temperature on day i in 

period j and let TXin 90 be the calendar day 90th percentile centred on 
a 5-day window for the period. Then the number of days per period is 

summed where, in intervals of at least 6 consecutive days: TXij > TXin 90

days
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mapping reordering (BCCAQ) to downscale the coarse reso-
lution climate models to a finer resolution (Rettie et al. 2023a; 
Gebrechorkos et  al.  2023; Werner and Cannon  2016). This 
technique has shown superior performance in removing bias 
from GCMs and reproducing extreme events (Gebrechorkos 
et  al.  2023; Werner and Cannon  2016). BCCAQ is a hy-
brid downscaling method which combines bias Correction 
Climate Imprint (BCCI—Hunter and Meentemeyer  2005) 
and bias Correction Constructed Analogs (BCCA—Maurer 
et al. 2010). During the downscaling process, the BCCI inter-
polates the coarse resolution climate model to finer resolution 
using Quantile Delta Mapping (QDM—Cannon et  al.  2015), 
whereas BCCA performs the quantile delta mapping between 
the GCMs and the spatially aggregated reference dataset to 
GCM resolution, and the relationship between the GCMs and 
the reference dataset is used to get the final bias corrected 
model data. It is worth noting that the BCCI and BCCA analy-
ses are performed independently during the downscaling pro-
cess, and the BCCAQ combines the outputs. For the Climate 
Imprint (CI) process, the raw GCM anomalies are interpolated 
firstly to the fine spatial resolution of the observation data. 
The anomaly for each day of the year is calculated by subtract-
ing from the modelled daily value the corresponding monthly 
climatological value for that day. Secondly, for each day of the 
year, the monthly climatology derived from monthly obser-
vational data is added to the corresponding daily anomaly of 
the interpolated raw GCM daily anomaly for each grid cell. 
Thirdly, the QDM is used to bias correct the interpolated raw 
data obtained from the previous step. More details about the 
implementation of QDM are provided by Cannon et al. (2015) 

and Rettie et al. (2023b). Overall, BCCI prepares data for the 
next step by applying quantile mapping as a post-processing 
step to interpolate the fine scale outputs from CI. The 
Constructed Analogue (CA) steps include (1) aggregating the 
finer scale observed data to the GCM grid, (2) bias correcting 
raw GCM using QDM, (3) searching for a subset of analogue of 
the GCM weather pattern with the target pattern, and (4) de-
termining a regression coefficient between the analogue and 
the target pattern to linearly combine the bias corrected CI 
outputs, creating a spatially high resolution downscaled data. 
A schematic process and the detailed steps for the BCCAQ can 
be found in Rettie et al. (2023a).

3.2   |   Definition of the Time Reaching 1.5°C 
and 2°C Global Warming

According to the Paris Agreement, the 1.5°C and 2°C global 
warming thresholds are relative to the preindustrial period (Shi 
et al. 2018). In this study, the +1.5°C (+2°C) period is defined as 
the time when the 30-year running mean of the global mean tem-
perature reaches +1.5°C (+2°C) compared to the preindustrial pe-
riod following the methodology defined by Vautard et al. (2014). 
In this study, we considered the period 1971–2000 as the baseline 
period. However, based on observed surface temperature (NASA-
Goddard Institute for Space Studies GISS Surface Temperature 
Analysis) (Hansen et  al. 2010), we estimate a climate warming 
of around 0.46°C from the preindustrial period relative to the 
baseline period. Thus, for each CMIP6 model, the +1.5°C (+2°C) 
period is the year when the 30-year moving average of the global 

FIGURE 1    |    Study area—the Mississippi River Basin and sub region boundaries are shown. The background map shows major land cover types. 
The sub regions denoted are Ark—Arkansas-White-Red River basin, LM—Lower Mississippi river basin, MO—Missouri river basin, Ohio—Ohio 
river basin, Ten—Tennessee river basin, and UM—Upper Mississippi river basin, respectively. [Colour figure can be viewed at wileyonlinelibrary.
com]
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mean temperature first reaches +1.04°C (+1.54°C) relative to the 
baseline period 1971–2000. Table  S2 shows the crossing time at 
which each model reaches 1.5°C and 2°C global warming under 
each scenario (SSP2-4.5 and SSP5-8.5).

3.3   |   Sources of Uncertainties in the Projected 
Climate Extremes

Usually, there are three types of uncertainty in climate projec-
tions, namely: (1) model uncertainties due to different projec-
tion produced by different models, (2) scenario uncertainty, 
which is related to radiative forcing considered for projection 
and (3) the internal variability which is the expression of the 
fluctuation in a long-term trend in each projection. Following 
the methodology proposed by Hawkins and Sutton  (2009, 
2010), we evaluated the uncertainty estimate in temperature 
and precipitation related indices (Table 1) for the period 2015–
2099. Here the decomposition of uncertainty is computed 
based on the changes of climate extreme indices, considering 
the period 1971–2000 as the baseline period. In this study, the 
changes in precipitation indices are expressed as percentage 
following Equation (1)

and the change in temperature is expressed as follows:

where ΔZ(s,m, t)id is the changes in extreme indices I(s,m, t)id 
relative to the period 1971–2000. s = 1, … ,Ns, m = 1, … ,Nm, 
and t = 1, … ,Nt refer to the number of SSPs, GCMs and years 
respectively. Here Ns, Nm and Nt are the number of the SSP, GCM 
and time length respectively. To assess the three different types 
of uncertainty cited above, the smooth mean changes of the in-
dices for all GCMs and SSPs is divided into changing signal and 
the residual by fitting fourth order and second order polynomial 
regression to precipitation and temperature related indices re-
spectively (Hawkins and Sutton 2009). The changes can be writ-
ten as:

here i(s,m, t) and �(s,m, t) are the mean changes and resid-
ual respectively after fitting the fourth order and two order 
polynomial regression on precipitation and temperatures in-
dices respectively. The total uncertainty can be quantified as 
follows:

where S(t), M(t), and V  are respectively the scenario uncer-
tainty, the model uncertainty and the internal variability (see 
Supporting Information for details steps on how each uncer-
tainty is separated and quantified).

3.4   |   Signal to Noise Ratio

The signal to noise ratio (S/N) is evaluated to quantify the influ-
ence of uncertainties on changes in projected climates extreme. 
It can be expressed as follows:

where i(t) denotes the average of the changes over all models and 
scenarios. A larger S/N underscores that the changes in projected 
climates extreme dominates the total uncertainty. In the same 
vein, a small S/N (less than unit is absolute value) indicates that 
the projected changes should be taken with caution since the un-
certainty dominates the changing signal and thus do not provide 
suitable information for decision making. In this study we evalu-
ated the S/N for all the six sub-basins over the MRB.

3.5   |   Models' Evaluation

We evaluated the BCCAQ in simulating the spatial pattern and 
the amplitude of the extreme temperature and precipitation in-
dices over the period 1971–2000 against the observational data 
described in Section 2.1.2. The evaluation metrics, such as Root 
Mean Square Error (RMSE), Pearson Correlation Coefficient 
(PCC), and mean bias error (MBE) (see Supporting Information 
for details), are also used to evaluate the ability of BCCAQ in 
reproducing the extreme precipitation and temperature related 
indices. Compared to raw climate models, the ensemble mean of 
the downscaled models can capture well the spatial pattern of 
the precipitation and temperature related indices (Figures S1 and 
S2). The evaluation metrics (RMSE, PCC, and MBE) before and 
after downscaling are presented in Figures  S3–S6. The RMSE 
and MBE amongst precipitation indices are reduced considerably 
after downscaling and fall below units, particularly for R20mm 
and CWD (Figure S4), implying a good performance of BCCAQ 
in simulating the heavy precipitation and CWD. Similarly, the 
correlation between indices after downscaling is greater than 
0.8. Although BCCAQ can simulate precipitation indices, bias 
still persists after downscaling, particularly for SDII and R95p 
(Figure  S4); however, the amplitude of biases is reduced com-
pared to bias before downscaling, where models overestimate 
SDII over the MRB. Overall, for SDII and R95p, BCCAQ provides 
significant improvement over the Missouri region compared to 
the lower Mississippi, Ohio, and Tennessee region. Regarding the 
temperature related indices, the RMSE is strongly reduced after 
downscaling (Figure S6) for all the indices compared to RMSE 
before downscaling (Figure S5). The correlation coefficients are 
improved significantly, particularly for TX90p and WSDI. The 
amplitude of MBE is also reduced significantly after the down-
scaling, except for TX90p, where a slight overestimation by a 
factor of 1.8 over the MRB is noticeable (Figure S6). Similarly, 
overestimated TXx in the northern Missouri region in raw mod-
els turns into underestimation after downscaling, suggesting 
that the used bias corrected method may also contribute to un-
certainties in projected climate indices. Overall, the results from 
the bias correction method show that BCCAQ is able to capture 
the spatial pattern and considerably reduce the biases in precipi-
tation and temperature related indices.

(1)ΔZ(s,m, t)id = 100 ×

⎛

⎜

⎜

⎜

⎜

⎝

I(s,m, t)id

1

30
×

2000
∑

t = 1971

I(s,m, t)id

− 1

⎞

⎟

⎟

⎟

⎟

⎠

(2)ΔZ(s,m, t)id = I(s,m, t)id −
1

30
×

2000
∑

t = 1971

I(s,m, t)id

(3)ΔZ(s,m, t)id = i(s,m, t) + �(s,m, t)

(4)T(t) = S(t) +M(t) + V

(5)S∕N(t) =
i(t)

1.65 ×
√

T(t)
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4   |   Results

4.1   |   Changes in Precipitation Extreme

We start by analysing the change in daily precipitation at 
GWL1.5 and GWL2 (Figure S7) over the MRB. Under ssp2-4.5 
(Figure S7a,b), the daily precipitation increases on average by 
137% (141%) at GWL1.5 (GWL2) relative to the period 1971–
2000. Likewise, daily precipitation increases on average by 
139% (141%) at GWL1.5 (GWL2) under SSP5-8.5 (Figure S7d,e). 
With an additional 0.5°C (from 1.5°C to 2°C) warming, 
daily precipitation increases on average by 4% and 2% under 
SSP2-4.5 and SSP5-8.5 respectively. Regionally, the Arkansas 
region will experience the highest rate of increased daily 
rainfall under SSP2-4.5 (SSP5-8.5), followed by the Missouri 
region and Upper Mississippi (Table  2). However, in terms 
of intensity, the Lower and Upper Mississippi, Southeastern 
part of Arkansas, and Tennessee will experience the high-
est increased daily rainfall ranging from 1.8 to 2.4 mm/day 
(Figure S8). Over Arkansas, increased daily precipitation could 
be associated with high elevated areas (Figure 1). With an ad-
ditional 0.5°C warming relative to GWL1.5, increased rainfall 
is projected to occur over the entire MRB under SSP2-4.5, ex-
cept over southwest Missouri and part of the Arkansas region 
where reduced daily precipitation is observed. Under SSP5-8.5, 
an additional 0.5°C warming projects to increase daily rain-
fall over the northern Missouri region, Ohio, and Tennessee 
region (Figure  S7f). However, compared to SSP2-4.5 
(Figure  S7c), reduced daily rainfall with an additional 0.5°C 
extends to the Lower and Upper Mississippi, Arkansas, and 
southern Missouri region under SSP5-8.5 (Figure  S7f). The 
difference between the changes in both scenarios (SSP2-4.5 
and SSP5-8.5) shows moderate increased daily precipitation at 
GWL1.5 (Figure S7g); however, reduced daily precipitation is 
enhanced over almost the entire MRB at GWL2 (Figure S7h,i), 
particularly over the Missouri region, Arkansas, and Upper 
Mississippi.

Under SSP5-8.5 (Figure 2), a regional mean increase of SDII by 
3.45% and 4.65% is associated with an increased heavy precipi-
tation (R20mm) by 3.79% and 5.23% at GWL1.5 and GWL2 re-
spectively. This implies an average increase of SDII and heavy 
rainfall by 1.14% and 1.37% respectively with an additional 

warming of 0.5°C. The northern Missouri region encompassing 
Montana, North and South Dakota, Wyoming will experience 
about 12% increased heavy rainfall with additional 0.5°C cli-
mate warming associated with an additional 4%–6% increased 
SDII. However, decreased heavy precipitation is observed over 
the Southwestern part and centre Missouri region as the SDII 
also decreases. Over the lower Mississippi (Ohio river basin), 
an average decreased (increased) heavy precipitation associated 
with increased SDII is more pronounced at GWL1.5 compared 
to GWL2. The regional differences in the changes for both global 
warming levels show that heavy rainfall is projected to be more 
frequent over the Ohio river basin with an increase of about 26% 
(20%) at GWL2 (GWL1.5) leading to an increase of up to 12% 
with an extra warming of 0.5°C. However, heavy precipitation 
events are likely to decrease by 6% over the Lower Mississippi, 
Centre Missouri and Arkansas Region at GWL2 relative to 
GWL1.5. The average regional increase of CWD is about 1.61% 
and 1.563% at GWL1.5 and GWL2 respectively. This implies an 
overall decrease in consecutive wet days with a warm climate 
over the MRB. The spatial variability shows that an increased 
CWD of about 6% is observed in south and northeast MRB at 
both GWL1.5 and GWL2. Decreased CWD is mostly observed 
at the north Missouri river basin encompassing Montana and 
Wyoming at GWL1.5. Overall, a decreased CWD is observed 
almost everywhere in the MRB with an additional warming of 
0.5°C. Likewise, R95p is projected to increase by 14% and 16% on 
average at GWL1.5 and GWL2 respectively. The spatial variabil-
ity shows an increase of R95p almost everywhere in the MRB at 
both warming levels, except in the western border of Arkansas 
region where decreased R95p by 8% is noticeable. The spatial 
variability exhibit that the Ohio river basin will experience in-
creased R95p as the warming goes up. This exposes the Ohio 
river basin to natural disasters such as flooding as a response 
to increasing warming. Unlike the Ohio river basin, the other 
parts of MRB are projected to experience a decline in R95p from 
GWL1.5 to GWL2. This decrease is about 9% over Arkansas, 
lower Mississippi and centre Missouri region owing to addi-
tional 0.5°C warming. It is perceived widely that extremes pre-
cipitation will increase in the context of Paris agreement targets 
(Engelbrecht et  al.  2015; James et  al.  2017). Though, over the 
MRB an additional warming of 0.5°C in the MRB exhibits a 
decrease in extreme precipitation events over almost all the do-
main, particularly for R95p and CWD. The decrease in CWD is 
consistent to findings of Zhao et al. (2023). In fact, over the pre-
viously mentioned areas, extreme precipitation is projected to 
increase at GWL1.5 and will become more severe at GWL2. It is 
noteworthy that, under SSP2-4.5 (Figure S9) changing patterns 
of extreme precipitation indices are similar to changing pat-
terns under SSP5-8.5, however substantial differences exist. For 
instance, under SSP2-4.5 (Figure  S9), CWD decreases almost 
everywhere in the MRB vat GWL1.5 except lower Mississippi 
and Ohio region, compared to SSP5-8.5 where decreased CWD 
is observed only in the northern Missouri region at56 GWL1.5. 
Furthermore, with additional 0.5°C global warming, only the 
central Missouri region will experience decreasing R95p under 
SSP2-4.5 (Figure S9) which is different from what is observed 
under SSP5-8.5 (Figure 2) where in addition to central Missouri, 
Arkansas region and part of North MRB are also experiencing 
reduced R95p. Likewise, reduced frequency of CWD with addi-
tional warming is enhanced almost everywhere the MRB under 
SSP5-8.5 compared to SSP2-4.5 (Figure S9). Also, the intensity 

TABLE 2    |    Average percentage change in daily precipitation over 
sub-basins.

Sub-basins

SSP2-4.5 SS5-8.5

1.5°C 2°C 1.5°C 2°C

Ark 285% 292% 289% 290%

UM 179% 185% 182% 185%

LM 74% 77% 75% 76%

Ten 28% 29% 27% 30%

MO 210% 215% 212% 216%

Ohio 46% 48% 46% 49%

MRB 137% 141% 139% 141%
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of SDII shows a greater reduction under SSP5-8.5 compared to 
SSP2-4.5 with additional 0.5°C warming. This demonstrates 
that increasing temperature is projected to affect hydrologi-
cal cycle over the MRB such as enhanced water scarcity under 
SSP5-8.5 compared to SSP2-4.5, highlighting the sensitivity of 
extreme precipitation to emission scenario.

4.2   |   Changes in Extreme Temperature

Over the Missouri region, the surface temperature increases on 
average by 1.95°C (2.6°C) at GWL1.5 (GWL2) under SSP2-4.5 
over the MRB. This corresponds to an average increase of about 
21% and 28% at GWL1.5 and GWL2, respectively. Similarly, 
under SSP5-8.5, the surface temperature on average increases 
by 1.9°C and 2.7°C at GWL1.5 and GWL2, corresponding to 
about 21% and 29%, respectively. An additional 0.5°C warming 
(from 1.5°C to 2°C) increases the surface temperature by 0.68°C 
(0.78°C), corresponding to about 35% (41%) temperature rise 
under SSP2-4.5 (SSP5-8.5) (not shown).

Under SSP5-8.5 (Figure 3), the mean changes of ETR in the MRB 
are about −0.83°C and −1.26°C at GWL1.5 and GWL2 respectively 
leading to additional decrease of 0.42°C with an additional 0.5°C 
climate warming. This implies a decreased ETR as the tempera-
ture goes up. The decreased ETR is associated with averages in-
creased TNn by 3.02°C and 4.32°C, which dominates the mean 
changes in TXx which are 2.19°C and 3.05°C at GWL1.5 and 
GWL2, respectively. A dipole distribution characterises the spatial 
pattern of changes in ETR. Regionally, the ETR is expected to in-
crease by 3°C–4°C (2°C–3°C) over the western part of the MRB 
encompassing Arkansas and Missouri Region at GWL2 (GWL1.5) 
leading to increased ETR by 0.9°C with additional 0.5°C warming. 
On the other hand, decreased ETR by 4°C (3°C) is observed over 
the Upper Mississippi, Ohio, Lower Mississippi and Tennessee 
Region at GWL2 (GWL1.5). This leads to a decreased ETR of about 
1.6°C with additional 0.5°C warming. The changes of TNn exhib-
its an increased TNn over the entire MRB at both GWL1.5 and 
GWL2. At GWL1.5, the peak (4°C) of increased TNn is observed 
at the northern part of Upper Mississippi at GWL1.5. At GWL2, 
the peak (6°C) of increased TNn expands to cover the entire Upper 

FIGURE 2    |    Changes in extreme precipitation relative to the present day period (1971–2000) in 1.5°C (first column) and 2°C (second column) 
global warming for MME mean under SSP5-8.5. The MME means are computed as the average of all models for each global warming level. From top 
to bottom, the rows represent R20mm, CWD, SDII, and R95p, respectively. The third column represents the additional changes due to an additional 
0.5°C warming (difference between 2°C and 1.5°C). The dots areas are statistically significant at 95% according to the student t-test. [Colour figure 
can be viewed at wileyonlinelibrary.com]
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Mississippi and the Ohio region. This behaviour leads to enhanced 
increased TNn by 2.3°C within the Upper Mississippi and Ohio 
region with an additional 0.5°C warming. Like TNn, increased 
TXx is observed over the entire MRB at both GWL1.5 and GWL2, 
however there is a difference in their spatial variability. The peak 
of increased TXx by 3°C (4°C) occurs over the western part of 
MRB encompassing the Missouri, Arkansas and north Upper 
Mississippi region at GWL1.5 (GWL2). With increasing maxi-
mum temperature, warm days (TX90p) and warm spell duration 
(WSDI) are increasing also over the entire MRB at both GWL1.5 
and GWL2, however with less spatial variability. The average in-
creases of TX90p WSDI are about 12 days and 21 days at GWL1.5 
and GWL2 respectively. As a result, TX90p increases by 9 days with 

an additional 0.5°C warming of the climate. Likewise, the WSDI 
increase by 2 days and 4 days at GWL1.5 and GWL2 respectively, 
leading to an increase by 1.5 days with additional 0.5°C warming. 
Similar behaviour is observed under SSP2-4.5 (Figure S10) regard-
ing the spatial variability of the change in extreme temperatures 
indices, however differences in the magnitude of change are no-
ticeable. For instance, under SSP2-4.5, TX90p increases by 21 days 
and 33 days at GWL1.5 and GWL2 respectively. Whilst under 
SSP5-8.5 the change in TX90p WSDI is about 12 days and 21 days 
at GWL1.5 and GWL2 respectively. Our results are consistent 
with Karmalkar and Bradley (2017) who found that temperature 
is increasing over the United States, but with great disparity in the 
magnitude of change across subregions. Our findings also align 

FIGURE 3    |    Changes in extreme temperature relative to present day period (1971–2000) in 1.5°C (first column) and 2°C (second column) global 
warming for MME mean under SSP5-8.5. The MME means are computed as the average of all the models for each global warming level. From top to 
bottom, the rows represent ETR, TNn, TXx, TX90p, and WSDI respectively. The third column represents the additional changes due to an additional 
0.5°C global warming (difference between 2°C and 1.5°C). The dots areas are statistically significant at 95% according to the student t-test. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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with results from other parts of the world (Fotso-Kamga et al. 2023; 
Iyakaremye et al. 2020; You et al. 2022; Ngavom et al. 2024) where 
temperature related indices are projected to increase at GWL1.5 
and more under GWL2. Overall, surface temperature over the 
MRB along with temperature indices are expected to increase at 
both global warming targets and scenarios. The enhancement of 
increased surface temperature and related indices under SSP5-8.5 
shows their sensitivity to warming scenario.

4.3   |   Regional Mean Changes

We start by showing in Figure  4 the mean change in extreme 
precipitation over the Mississippi sub-basin under SSP2-4.5 
(Figure 4a) and SSP5-8.5 (Figure 4b). The most important changes 
are recorded for R95p both at GWL1.5 and GWL2 over the sub-
basins and for the two scenarios. The minimum change in R95p is 
12% over the Missouri river basin for both scenarios at GWL1.5. At 
GWL1.5, the change in R95p is almost similar and generally lower 
than 20%, with the exception being over the Ohio and Tennessee 

region which records about 23% for both SSP2-4.5 and SSP5-8.5. At 
GWL2, increased R95p generally exceeds 20% for both SSP2-4.5 
and SSP5-8.5 except in the Missouri and Arkansas region where 
changes are about 18%. The observed increasing changes in R95p 
can exceed 30% for SSP5-8.5, particularly over the Ohio and 
Tennessee river basin, suggesting a greater occurrence of extreme 
rainfall over the entire MRB under both scenarios. This demon-
strates the sensitivity of the changes in R95p over the MRB with 
climate scenarios. The changes in CWD are less than 5% over the 
sub-basins at SSP2-4.5 and SSP5-8.5, demonstrating substantial 
increased daily rainfall intensity at warmer climate. Similarly, 
the increased SDII and R20mm are also observed; however, they 
barely reach 8% at GWL1.5 and GWL2 at SSP2-4.5 and SSP5-8.5. 
Overall, a general increase in precipitation indices is observed over 
the entire MRB.

Figure  5 shows the changes in extreme temperatures over 
each sub-basin. Over the Missouri Arkansas River basin, the 
increase in TXx by 2.6°C is associated with increased TNn by 
2.6°C at both GWL1.5 and GWL2 under SSP2-4.5, leading to the 

FIGURE 4    |    The regional mean changes in extreme precipitation relative to present day period (1971–2000) at 1.5°C and 2°C global warming un-
der (a) SSP2-4.5 and (b) SSP5-8.5. The sub-basins are denoted LM, MO, Ohio, Ten, UM, Ark for Lower Mississippi, Missouri River basin, Ohio river 
basin, Tennessee region, Upper Mississippi, and Arkansas respectively. The vertical lines over the bars indicate the range of standard deviations. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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cancellation of changes in ETR; however, at GWL2, a substan-
tial increase in ETR by −0.3°C is associated with increased TNn, 
which dominates the increased TXx (a). Except for the above-
mentioned regions, decreased ETR is observed over all the sub-
regions due to increased TNn dominating the increased TXx in 
a warming climate. Under SSP2-4.5 (Figure 5a), the decreased 
ETR is more pronounced over Ohio, Tennessee, and Upper 
Mississippi at GWL1.5. This is justified by the increased TNn, 
which is twice the increased TXx in absolute values. Indeed, 
increased TNn (TXx) by 3.69°C (1.86°C), 3.19°C (1.73°C), and 
3.84°C (2.08°C) leads to decreased ETR by 1.83°C, 1.46°C, 
and 1.75°C over Ohio, Tennessee, and Upper Mississippi, re-
spectively. This behaviour is also observed at GWL2 but with 
larger values. In particular, the decreased ETR by 2.52°C and 
2.63°C is associated with increased TNn by 5.08°C and 5.55°C, 
and increased TXx by 2.58°C and 2.97°C over Ohio and Upper 
Mississippi River basin, respectively. The changes in ETR, 
TXx, and TNn are similar under SSP5-8.5 (Figure 5b) as under 
SSP2-4.5 (Figure  5a); however, a substantial difference is ob-
served within the Missouri and Arkansas region. Indeed, in-
creased TNn is more pronounced under SSP5-8.5 compared to 
SSP2-4.5 in the aforementioned regions, both in GWL1.5 and 
GWL2; however, an unchanged ETR is observed. This led to 
a decreased ETR by 0.57°C (0.73°C) and 0.35°C (0.46°C) at 

GWL1.5 (GWL2) over the Missouri and Arkansas region, re-
spectively. Under SSP2-4.5 (SSP5-8.5), the change on extremely 
warm days is about 20%/30% (10%/20%) at GWL1.5/GWL2. 
Indeed, at GWL2, the extremely warm days increase by 1.5 
times more than at GWL1.5 under SSP2-4.5 (Figure 5c). This 
ratio doubles under SSP5-8.5 (Figure 5d). Similarly, the warm 
spell duration index (Figure 5e) increases by four (two) days at 
GWL1.5 and by six (four) days at GWL2 over the sub-basin under 
SSP2-4.5 (SSP5-8.5). This means that an additional warming 
of 0.5°C can double the number of extremely warm days and 
warm spell duration. This is a very relevant finding since a 
few changes in such extreme temperatures can have a harmful 
effect on crop growth (He and Chen 2022) with a devastating 
impact on crop yields (Vogel et  al.  2019). Contrary to what is 
expected, the magnitude of changes in projected temperature-
related indices (except for ETR, TXx, and TNn which exhibit al-
most the same magnitude) decreased from moderate (SSP2-4.5) 
to higher (SSP5-8.5) scenarios (Figure 5b–f). This is not consis-
tent with findings in Ethiopia (Rettie et al. 2023b) and Central 
Africa (Ngavom et al. 2024), where the magnitude of changes 
in temperature indices consistently increases with the scenario.

The sensitivity of the results to forcing scenarios highlights 
the prominent impacts of human activities, particularly 

FIGURE 5    |    As for Figure 3 but for extreme temperature. (a–d) ETR, TNn, TXx, (b–e) TX90p and (c–f) WSDI. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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greenhouse gas emissions leading to increased temperature re-
sulting in increased ozone levels near the surface. This further 
leads to a significant impact on public health. For instance, in-
creased ozone levels could potentially result to 10,000 of ozone-
related deaths and illness in the United States by 2030 (Fann 
et al. 2014). Moreover, the increased temperatures, particularly 
extremely hot days (TX90p) is projected to cause premature 
deaths on projected population (Mills et  al. 2014), additional 
annual mortality in Houston Texas (Marsha et  al. 2016), and 
likely 10,000 additional annual deaths due to cardiovascular 
stress in the population aged 65 years and above in the Eastern 
United States (Limaye et  al. 2018) in future emission scenar-
ios. Conversely, the decreased ETR owing to the increased TNn 
dominating the increased TXx may be advantageous to infra-
structure in the United States such as rail ways tracks which 
are less sensitive to thermal expansion if no other factors are 
considered (Martinich and Crimmins 2019). Prolonged oc-
currence of extremely hot days and warm spell duration may 
result in cracking soil, heat stress, and decreased water avail-
ability with consequences on crops yields and food security. 
Numerous findings have highlighted the environmental and 

economic impacts of precipitation related extreme indices over 
the United States in the coming decades. In addition to flood-
ing, the increased SDII, extreme and heavy precipitation may 
result in infrastructure failure (Chinowsky et al. 2013; Wright 
et  al. 2012; Chinowsky et  al. 2019; Melvin et  al. 2016), water 
quality (Boehlert et  al. 2015), urban drainage problems, sub-
surface water overloading, surface erosion, nutrients trans-
port, with consequence on crops heath and agriculture (Beach 
et al. 2015). Specifically, more than 10,000 bridges could be vul-
nerable to increased flooding due to projected increased SDII 
(Wright et al. 2012), and additional public expenditures rang-
ing from $30 to $50 billion could arise if no mitigation policy is 
implemented to tackle the impact of increasing temperature on 
US agriculture during the period 2015–2100 (Beach et al. 2015). 
Overall, this research is anticipated to inform researchers, 
emergency managers, farmers, dam operators, insurance 
agents, lenders, and policy makers about creating strategies and 
mitigation plans to address the impacts of changing weather 
patterns on disaster recovery, conservation practises, farming 
operations, residential and commercial development, and regu-
lations like zoning laws.

FIGURE 6    |    Percentage shared of uncertainty for precipitation indices depicted by subregions for the period 2015–2099. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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4.4   |   Projection Uncertainty

Three sources of uncertainties in climate projections are as-
sessed: (1) the uncertainty from climate sensitivity to external 
forcings (model or GCM uncertainty), (2) the natural climate 
variability (Internal variability) and (3) the uncertainty from dif-
ferent projection scenario (scenario uncertainty) (Hawkins and 
Sutton 2009, 2010; You et al. 2022; Rettie et al. 2023a). Figures 6 
and 7 present the evolution of three sources of uncertainties for 
precipitations and temperature related indices respectively over 
each of the sub-basins. Precipitation-related indices indicate a 
general constant contribution of the internal variability (Figure 6) 
to total uncertainty throughout the time. The contribution of the 
internal variability accounts for about 75%, making it the largest 
contributor to total variance. These findings are largely consis-
tent across different sub basins of the MRB. These results are 
also consistent with the findings of Hawkins and Sutton (2010) 
on a global scale who showed that internal variability is the main 
source of uncertainty in projected precipitation. Internal vari-
ability has been identified also as the prominent source of un-
certainty in CDD and CWD in Ethiopia (Rettie et al. 2023b). The 
second largest contributor to total variance in the MRB, is the 
model uncertainty which accounts for about 20%–21% whereas 
the scenario uncertainty remains marginal across sub region.

Unlike precipitation related indices, uncertainties in tempera-
ture indices (Figure 7) vary considerably amongst indices and 

sub-basins. The contribution of internal variability (GCMs) 
to total variance is about 78%–80% (14%–20%) for ETR. These 
contributions from internal variability and GCMs are consis-
tent over time across sub-regions, with contribution from SSPs 
being marginal. A slight decrease in internal variability is ob-
served around 2060 before an increment just after 2080. Unlike 
ETR, TNn shows a decreased internal variability associated 
with a slight increased GCMs uncertainty from the beginning 
of the projected period (i.e., 2015) to the end (i.e., 2099) of the 
century. However, the uncertainty from SSPs remains marginal 
over time. For TNn, the contribution of internal variability to 
total variance ranges between 70% and 80% (18%–26%), whilst 
the uncertainty from SSPs lie between 1.5% and 4%. Decreased 
internal variability associated with increased GCMs and sce-
nario uncertainty are observed around 2060 for WSDI, TX90p 
and TXx. These findings are largely consistent across all the 
subregions. Accordingly, the uncertainty from GCM (internal 
variability) accounts for about 3.5%–25.55% (73%–95%) at the 
beginning of projected period to about 42%–58% (13%–44%) 
by the end of the century. On the other hand, the uncertainty 
from SSPs account for about 0%–0.86% at the beginning of pro-
jected period to about 18%–38% by the end of the century for 
WSDI, TX90p and TXx. This is consistent with the findings of 
Karmalkar and Bradley  (2017) who showed important contri-
bution of scenario uncertainty to the total uncertainty in the 
projected temperature over the United States at the end of the 
21st century.

FIGURE 7    |    Same as Figure 6 but for temperature indices. [Colour figure can be viewed at wileyonlinelibrary.com]
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4.5   |   Robustness of the Projections

In this section, we quantify the signal to noise (S/N) ratio to de-
pict the influence of uncertainties on projected extreme indices 
(Hawkins and Sutton  2009) and then evaluate the robustness 
of the projected changes in climate extremes (Hawkins and 
Sutton 2009, 2010). Figures 8 and 9 represent the S/N for precip-
itation and temperature related indices respectively for each of 
the sub-basin over the MRB. SDII and R95p exhibit an increas-
ing S/N ratio for all the sub-basins whereas the number of heavy 
rainfall (R20mm) and the CWD show some variability over 
time. The S/N ratio is below unity despite an increase (Figure 8) 
from the beginning of the projected period to 2080 (a decrease 
with projection time is observed between 2080 and 2090 just be-
fore a slight increase at the end of the century) for most of the 
precipitation indices. This demonstrates that the magnitude of 
projected changes is smaller than the associated uncertainties. 
This also implies that uncertainties associated with projected 
changes make it less reliable and not well suited for decision 
making. Recent studies (Madakumbura et al. 2021; Zhang and 
Chen 2021; Birhan et al. 2021) showed that achieving reliable 
projection for precipitation has been a challenge due to its high 
uncertainty. One of the reasons of this challenge could be the in-
ability of climate models in adequately simulating the El Niño–
Southern Oscillation (ENSO-Korecha and Barnston  2007) 
which is one of the most important climate systems governing 
extreme precipitation across the MRB (Dommo et al. 2024) and 
the entire United States. Since most of the state-of-the-art global 
climate models fail to realistically simulate ENSO (Beobide-
Arsuaga et al. 2021), the long-term projection of climate extreme 
might be affected as well. Therefore, the magnitude of the pro-
jected precipitation related extreme indices in this study might 
be considered with caution.

Largely consistent across the temperature-related extreme indi-
ces and for all the sub-basins (Figure 9), the S/N ratio increases 
with time except for the ETR which shows a decreasing trend. 
For almost all the sub-regions, the S/N ratio remains below 
unity. This demonstrates that the uncertainties dominate the 
magnitude of the changes over the MRB and hence the projected 
changes are not reliable. However, over the Upper Mississippi 
and Arkansas region, extremely warm days and warm spell du-
ration reach its maximum (above unity) in mid-century (~2060) 
before a slight decay is observed until the end of the century. The 
peaks around 2060 could be related to the shifts in the contribu-
tion of uncertainties from different sources (i.e., SSPs, GCM and 
internal climate variability) (Figure 7).

5   |   Discussion

Understanding changes in precipitation variability is important 
for a complete explanation of the hydrologic cycle response to 
global warming and its corresponding impacts. Future changes 
in precipitation and precipitation related indices are region de-
pendent generally around the world. This study provides an 
assessment of model-projected precipitation and temperature 
extreme indices over the MRB at 1.5°C and 2°C global warming 
under SSP2-4.5 and SSP5-8.5. Although biases still persist, the 
bias corrected method shows significant improvement in simu-
lating precipitation and temperature related indices. However, 

the corrected methods could be an additional source of uncer-
tainties in projected climates extreme (Lafferty and Sriver 2023).

Our results also reveal that, under both scenarios (SSP2-4.5 and 
SSP5-8.5) significantly increased heavy precipitation (R20mm) 
is observed mainly over Ohio and northern Missouri region. 
This increased R20mm goes from up to 2.4 days at GWL1.5 to 
up to 4 days at GWL2 (not shown). Similarly, significantly in-
creased SDII observed in Ohio region goes up to 2.4 mm/day 
probably due to increased daily precipitation (Figures S7 and S8). 
Contrary to R20mm, the changes in SDII are significant almost 
every here in the MRB, except in the northeastern part of the 
Arkansas region. Recent findings from Akinsanola et al. (2024) 
highlighted that under SSP5-8.5, the dynamics components of 
the moisture budget are the main factors contributing to in-
creased daily precipitation over the US during the winter season. 
Largely consistent at both warming levels (GWL1.5 and GWL2) 
and both scenarios (SSP2-4.5 and SSP5-8.5), the significant in-
creased SDII is accompanied by significant increased R95p and 
R20mm almost everywhere in the MRB, however, they are en-
hanced over the Lower Mississippi, Ohio and Tennessee region. 
Moreover, R95p exhibits high regional changes, reaching at least 
20% of changes under SSP2-4.5 and SSP5-8.5 at GWL1.5 and 
GWL2. The combined effect of increases of heavy and intense 
rainfall can leads to strong flooding risks over lower Mississippi, 
Ohio and Tennessee region with considerable impacts on econ-
omies, delaying planting, crops damage and other flood related 
damages (Mantua et al. 2010; Changnon et al. 1997; Rosenzweig 
et  al.  2002). Our results are consistent with findings from 
Akinsanola et  al.  (2020) who have found statistically robust 
increases in SDII and R20mm over the entire US, particularly 
during the winter season.

Regardless of the considered scenarios here (SSP2-4.5 or 
SSP5-8.5) temperature related indices (TNn, TXx, TX90p, 
WSDI) are projected to increase over the MRB. ETR exhib-
its a dipole spatial distribution with decreases over the Upper 
Mississippi, Ohio and Tennessee region and decreased over 
the western part of the domain encompassing Missouri, 
and Arkansas region. However, Figure  5 shows an average 
decreased ETR over all the sub-basins, resulting from in-
creased TNn dominating the increased TXx. Under SSP2-4.5 
(SSP5-8.5) an additional 0.5°C warming (i.e., from GWL1.5 
to GWL2) increases in the changes of warm days and warm 
spell duration by 50% (100%). This implies a strong sensitiv-
ity of temperature changes with forcing scenario. However, it 
is worth noting that under SSP5-8.5, changes of TX90p and 
WSDI are smaller than under SSP2-4.5 both at GWL1.5 and 
GWL2 (Figure  5). For instance, TX90p increases by 20 days 
under SSP2-4.5 and by 10 days under SSP5-8.5 at GWL1.5. 
Similarly, WSDI increases by 30 days under SSP2-4.5 and by 
20 days under SSP5-8.5 at GWL2. This can be explained by the 
threshold crossing time amongst the models considered in this 
study, rather than by a higher temperature under SSP2-4.5 
compared to SSP5-8.5 as might be surmised. For instance, 
1.5°C target is projected to be reached on average around 2031 
with a standard deviation of 8.0 years under SSP2-4.5 and on 
average around 2027 with a standard deviation of 6.5 years 
under SSP5-8.5. Likewise, the 2°C target is projected to be 
reached on average around 2051 with a standard deviation of 
15.0 years under SSP2-4.5 and on average around 2040 with 
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a standard deviation of 8.0 years under SSP5-8.5. This high 
inter-model variability on the threshold crossing time (see 
Table  S2) under SSP2-4.5 could be the source of the large 
changes observed compared to SSP5-8.5.

The signal to noise ratio shows values below unity for tempera-
ture and precipitation related indices. This is contrary to what 
Karmalkar and Bradley  (2017) found using a set 31 climate 
models with Representative Concentration Pathways (RCP), 
4.5 and RCP8.5, to diagnose changes in mean temperature over 
the US. In fact, the projected precipitation and temperatures 
related extremes remain highly uncertain due to internal vari-
ability (Figures 6 and 7). In this work, we acknowledge that the 
use of only one realisation for every climate model is insuffi-
cient to capture the full effect on internal variability that plays 
a significant role in driving regional climate fluctuations over 
years or decades. Whilst this shortcoming is not expected to 
have a significant impact on our conclusions, we suggest that 
uncertainty estimated be treated as acceptable guidelines. The 
decomposition of uncertainty in this study highlights the pre-
dominance of internal variability from the beginning to the 
end of the century, follow by the model uncertainty and the 
substantial contribution of uncertainty from climate scenarios. 
This implies that for futures research, effort should be put into 
using a large set of climate models rather than climate scenarios. 
Because of the predominance of internal variability, we tested 

the performance of each of the models in simulating the precipi-
tation and temperature for the period 1971–2000 with respect to 
the observational data. The models whose bias stand within the 
range of ±1.5 interannual standard deviation are identified as 
a better performing model. For the two models (CanESM5 and 
KACE-1-0-G) that stand out, the internal variability predomi-
nates (not shown). We hypothesise that even a perfect model's 
simulation will not necessarily prevent chaotic internal variabil-
ity from arising (Mitchell et al. 2013; Tebaldi and Knutti 2007; 
Deser et al. 2012). Furthermore, a deep understanding of what 
drives climate and its variability on a local and regional scale 
is critical for future generations of climate models and future 
climate changes assessment. Climate extremes often arise due 
to internal variability and external forcings. However, internal 
variability can be large enough to overwhelm external forcings 
even on multidecadal time scale (Jain and Scaife 2022; Fischer 
et al. 2013). Some studies (Deser et al. 2012, 2014) highlighted 
that future precipitation and temperature projections over North 
America on local and regional scale could be subject to internal 
climate variability. For instance, Hong et  al.  (2025) highlight 
that the amplitude of El Niño Southern Oscillation (ENSO) and 
ENSO-induced atmospheric teleconnections are projected to 
be enhanced resulting to significant increases in US hydrocli-
mate extreme events, with differences across region. Therefore, 
the ability of models to properly simulate the variability of 
some large scale atmospheric and oceanic circulation such as 

FIGURE 8    |    Signal to noise ratio of the precipitation extreme indices depicted over each of the sub-basins. [Colour figure can be viewed at wi-
leyonlinelibrary.com]
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ENSO, Pacific Decadal Oscillation (PDO) and North Atlantic 
Oscillation (NAO) are critical for the assessment of internal 
climate variability and future climate projections in order to 
meet the expectations of decision makers for accurate climate 
predictions.

6   |   Conclusions

This study investigates the changes in precipitation and tem-
perature related indices under SSP2-4.5 and SSP5-8.5 at 1.5°C 
and 2°C global warming using a set 12 high resolution CMIP6 
models over the Mississippi river basin at its corresponding 
subregion. The spatial variability of the changes and the uncer-
tainty associated with projected changes are investigated. The 
main findings can be itemised as follows:

1.	 Average daily precipitation is projected to increase under 
scenarios SSP2-4.5 and SSP5-8.5 at GWL1.5 and GWL2. 
However, changes at GWL2 exhibit a reduced daily precip-
itation compared to GWL1.5. This reduced daily rainfall is 
highly sensitive to warming scenario. This could result to 
more water scarcity at GWL2 under SSP5-8.5 compared to 
SSP2-4.5 over the Mississippi River Basin.

2.	 Regionally, the Missouri river basin, Arkansas region and 
part of Upper and lower Mississippi region are projected 

to experience major reduced daily rainfall at GWL2 under 
SSP5-8.5.

3.	 With an increase in climate warming, very heavy rainfall 
(R95p) associated with the increased simple daily intensity 
index (SDII) is projected to significantly increase every-
where in the Mississippi river basin compared to the pe-
riod 1971–2000. Increased SDII and R95p are enhanced 
at GWL2 compared to GWL1.5 under both scenarios. 
Similarly, heavy precipitation (R20) is projected to signif-
icantly increase over the Ohio river basin and Northern 
Missouri at both warming level and projected scenario.

4.	 Temperature related indices (TNn, TXx, TX90p, WSDI) 
are projected to increase over the entire Mississippi River 
basin, except for ETR which exhibits otherwise. The de-
creased ETR results from the mean changes in TNn dom-
inating the mean change in TXx as the temperature goes 
up. This implies in absolute value a rapid increase in TNn 
compared to TXx with global warming and warming sce-
nario over the Mississippi River basin.

5.	 Internal variability dominates the uncertainty estimates for 
temperature and precipitation indices over the Mississippi 
river basin, with almost no contribution from scenarios.

Overall, this study provides insights on the precipitation and 
temperature behaviour over the Mississippi river basin, at 1.5°C 

FIGURE 9    |    Same as Figure 8 but for extreme temperature indices. [Colour figure can be viewed at wileyonlinelibrary.com]
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and 2°C global warming. Whilst we acknowledge that effort 
should be deployed in using a large set of climate models with 
many realisations, this work provides information on the poten-
tial upcoming water scarcity with consequences on agriculture 
and ecosystems.
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