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ABSTRACT

Extreme precipitation and temperature have large socioeconomic and human health impacts. This study aims to analyse the
projected changes of extreme precipitation and temperature indices at 1.5°C and 2°C of warming over the Mississippi River
Basin (MRB) under Shared Socio-economic pathways (SSP) 2-4.5 and SSP5-8.5. We used a technique named bias correction
constructed analogues with quantiles mapping reordering (BCCAQ) to downscale daily precipitation, minimum and maximum
temperature from a set of 12 Coupled Models Intercomparison Project phase 6 (CMIP6) over MRB. The changes in extreme
precipitation and temperature indices such as very heavy rainfall (R95p), warm days (TX90p), and warm spell duration (WSDI)
are sensitive to warming targets and emission scenarios. Results indicate that both warming targets are expected to exacerbate
R95p whilst intensifying extreme precipitation and temperature as a whole except for cumulative wet days (CWD) (many parts
of MRB are experiencing reduced CWD at both warming targets and scenarios). However, the rainfall intensity (SDII) is more
reduced under SSP5-8.5 compared to SSP2-4.5 with an additional 0.5°C highlighting the sensitivity of SDII to the emission
scenario. An additional 0.5°C (from 1.5°C to 2°C) climate warming is expected to: (1) increase TX90p and WSDI by 50% under
SSP2-4.5 and nearly 100% under SSP5-8.5 over much of the MRB subregions, (2) reduce extreme precipitation in the centre of the
MRB. Uncertainty superimposes on the magnitude of changes with more than 75% contribution from internal climate variabil-
ity to total variance, nearly 20% from climate models, and marginal contribution from climate scenarios. The predominance of
natural climate variability underscores a decreased predictability in future extreme precipitation and extreme temperature due
to anthropogenic forcings, particularly at the regional scale. So, a deep understanding of what drives climate and its variability
on a local and regional scale is critical for future generations of climate models and climate projections assessment. However,
climate warming will pose serious challenges to water availability over the MRB, with consequences for agriculture, crop yields,
and ecosystems.
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1 | Introduction

There is international agreement that the 2°C surface tempera-
ture warming above preindustrial level carries with it an exces-
sive risk for human activities, and that there is a need to target
global warming below 1.5°C (Rogelj et al. 2015). According to
the International Panel on Climate Changes (IPCC 2022) Sixth
Assessment Report (SAR), continuous warming is already af-
fecting each inhabited region across the world. If no coercive
mitigation plan is implemented by the main international play-
ers, the global mean temperature will exceed the 1.5°C set by
2015 Paris agreement in the next two decades (Masson-Delmotte
et al. 2021), with a consequent increase in the number of extreme
weather events, such as flooding, droughts and heatwaves.

Over the US, many studies (Peterson et al. 2013; Akinsanola
et al. 2020; Anderson et al. 2010, 2015; Dommo et al. 2024) have
underscored the increases of extreme precipitation and tempera-
ture over the recent past decades. Expectations from projected
changes of precipitation (Zhao et al. 2023; Akinsanola et al. 2020;
Jong et al. 2023) and temperature (Aerenson et al. 2018) related
extreme indices point to an overall increase owing to climate
warming. Although previous studies provided valuable insights
into the projected extreme temperature and precipitation indi-
ces, few of them have considered the different Global Warming
Levels (GWLs) which are crucial for assessing the impact of lim-
iting global warming below 1.5°C compared to 2°C. In addition,
none of them have assessed the uncertainty associated with
projected changes which is important for resources allocation
and long-term mitigation plan. Then, the US lacks a significant
assessment of projected climates' extreme indices considering
GWLs and the associated uncertainties. Assessing changes
under GWLs and their uncertainty is crucial to avoid allocat-
ing resources or mitigation policies by targeting areas which are
not of the greatest need. The 1 September 2021 record breaking
rainfall over the northeast United States inundated densely pop-
ulated areas and caused more than $20billion in losses (Smith
et al. 2023). So, there is increasing concern about whether the
existing infrastructure is at risk due to a changing climate.

On aregional scale, detecting and projecting changes in precipita-
tion remain a challenge and uncertain (Kharin et al. 2013; Pfahl
et al. 2017; Xie et al. 2015) partly due to limitations coming from
coarse gridded global climate projections. However, even if the
concern regarding model resolution were resolved, other sources
of uncertainties that generally account for future projection are
(Hawkins and Sutton 2009, 2010): (1) internal variability (2), model
uncertainty and (3) scenario uncertainty. The latter uncertainty
generally occurs when assessing future projections from climate
scenarios. Assessing uncertainty in projected extreme indices can
help avoid large costs associated with insufficient or unnecessar-
ily rigorous adaptation (Eisenack and Paschen 2022). Regions like
the Mississippi river basin (MRB) are highly vulnerable to cli-
mate fluctuations due to its significant agricultural and livestock
production (Foley et al. 2004). The present study investigates the
benefits of mitigating the average temperature to 2°C or less by
computing a set of extremes precipitation and temperature indices
and investigating how they change across two warming scenarios
and to what extent there can be confidence in the changes in order
to inform research and mitigation choices, since climates extreme
have more impact on human and natural ecosystems.

Therefore, in this study, we seek to answer the questions: (1) how
do precipitation and temperature related extreme indices change
over the MRB under 1.5°C and 2°C global warming scenario? (2)
what are the magnitudes of the uncertainties associated with the
projected changes? (3) Could the simulated changes be associated
with anthropogenic climate forcings? To this end, we utilise a set
of 12 high-resolution downscaled climate models under Shared
Socio-Economic Pathways (SSPs) 2-4.5 and SSP5-8.5 to assess the
projected changes of four precipitation and five temperature re-
lated indices (Table 1) from the Expert Team on Climate Change
Detection and Indices (ETCCDI) under 1.5°C and 2°C global
warming over the MRB and its corresponding sub-basins. This
suite of indices gives a rich picture of climates relevant to differ-
ent sub-basins over MRB. The high-resolution downscaled data
used in this study are the output of bias correction constructed
analogues with quantiles mapping reordering (BCCAQ) which
has been shown to efficiently removing biases and reproducing
event scale spatial gradients. In addition, for precipitation, the
selected indices address both minimum and maximum tempera-
ture behaviour. The uncertainties are also evaluated following
the methodology described below. The manuscript is organised
as follows: Section 2 represents the data used; Section 3 provides
a description of the different methods used in this work. Results
are presented in Section 4. The discussion of our results is pro-
vided in Section 5 followed by the conclusion in Section 6.

2 | Data and Study Area
2.1 | Data
2.1.1 | CMIP6 Simulations

The modelled daily dataset (precipitation, near surface aver-
age, minimum and maximum temperature), used in this study
is from the Coupled Model Intercomparison Project Phase 6
(CMIP6, Eyring et al. 2016). These data are obtained from the
outputs of 12 CMIP6 models spanning from 1950 to 2099 (see
Table S1 for spatial resolution, institutions, model names, and
variables). CMIP6 represents an updated version of previous it-
erations such as CMIP3 (Meehl et al. 2007) and CMIP5 (Taylor
et al. 2012) with changes in model configuration including
model resolution, physical processes, and atmospheric chemis-
try treatment. This study assesses the changes in four extreme
precipitation and five temperature extreme indices under 1.5°C
and 2°C global warming above preindustrial level, using two
shared socio economic scenarios (O'Neill et al. 2016): (1) the
middle of the road scenario (hereafter, SSP2-4.5) considered as
the moderate scenario which assumes that climate protection
measures are being taken, and (2) the fossil fuel development
scenario (hereafter, SSP5-8.5) which is the worst-case climate
scenario based on enhanced global economic and high percent-
age of coal and energy-intensive lifestyle worldwide.

2.1.2 | Observational Dataset

The daily dataset with 0.25°x0.25° spatial resolution for the pe-
riod 1950-2010 provided by Princeton University—Department
of Civil and Environment Engineering (https://rda.ucar.
edu/datasets/d314000/) was used to run the bias correction
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TABLE1 | Listoftemperature and precipitation indices used in this study.
Indices Name Definition Unit
R20mm Number of very heavy Let RR; be the daily precipitation amount on day i in period days
precipitation J- Count the number of days where RR;>20mm
CWD Cumulative wet or wet spell Maximum number of days with precipitation >1mm in a given period days
SDII Simple daily intensity index Average rainfall from wet days. Let RRwj be the daily rainfall mm/day
amount on wet-day, PRCP > 1mm in period j. If W represents
number of wet days in j, then: SDIJ; is the total precipitation
of wet for the period j divided by the number of wet days
R95p Very wet days total Annual total PRCP when RR>95th percentile. Let RR,,; be the mm
precipitation daily precipitation amount on a wet day w (RR=1.0mm) in period
i and let RR,,, 95 be the 95th percentile of precipitation on wet
days in the reference period. If W represents the number of wet
w
days in the period, then: R95, = 3 where RR,; > RR,,,,95
w=1
ETR Extreme temperature range Let TXx be the daily maximum temperature in month k and °C
TNn the daily minimum temperature in month k. The extreme
temperature range each month is then: ETR, = TXx, — TNn;,
TXx Maximum value of daily Let TXx be the daily maximum temperatures in month °C
maximum temperature k, period j. The maximum daily maximum temperature
each month is then TXx,; = max (TXx;)
TNn Minimum value of daily Let TNn be the daily minimum temperatures in month °C
minimum temperature k, period j. The minimum daily minimum temperature
each month is then TNn,; = min (TNn;)
TX90p Warm days Number of days when TX > 90th percentile: Let TX;; be days
the daily maximum temperature on day i in period j
and let TX 90 be the 90th percentile for the given period.
Count the number of days where TX;; > TX90
WSDI Warm spell duration Annual count of days with at least 6 consecutive days when TX > 90th days

percentile: Let TX}; be the daily maximum temperature on day i in
period j and let TXX;, 90 be the calendar day 90th percentile centred on
a 5-day window for the period. Then the number of days per period is

summed where, in intervals of at least 6 consecutive days: TX;; > TX;, 90

constructed analogues with quantiles mapping reordering. It is
a global meteorological forcing dataset for land surface model-
ling and can be used to drive models (Sheffield et al. 2006). The
dataset is a combination of National Centres for Environmental
Predictions/National Centre for Atmospheric Research (NCEP/
NCAR, Sheffield et al. 2006) reanalysis with global observation-
based datasets. Daily minimum and maximum temperature, as
well as daily precipitation from the period 1948-2010 can be re-
trieved from Research Data Archive (last access 12 August 2025,
https://rda.ucar.edu/datasets/d314000/).

2.2 | Study Area

In this study, we focused on the MRB (Figure 1). It drains
the fourth-largest river in the world, covering almost 41% of
the conterminous US and encompasses 31 states (Muller and
Schaetzl 1998). Economically, MRB is of national importance
because of its potential in terms of hydroelectric power gener-
ation, agricultural and food productivity (Foley et al. 2004),
transportation, and services. The river is joined by many other
rivers and forms six main sub-basins such as: Missouri River

basin (MO), Arkansas River basin (Ark), Upper MRB (UM), L
MRB (LM), Ohio River basin (Ohio), and Tennessee River Basin
(Ten). A recent study (Dommo et al. 2024) highlighted a de-
creasing trend in extreme precipitation over the MRB, such as
heavy and very heavy precipitation found mostly in Ohio, LM,
UM, Ten, and Ark, where the temperature components (mean,
minimum, and maximum) are significantly increasing in con-
cert with a warming climate. In addition to surface elevation
and large-scale atmospheric and oceanic circulation (Dommo
et al. 2024), extreme precipitation over the MRB is driven by
moisture flux from the Gulf of Mexico. This intense moisture
flux contributes to approximately 94% of the total precipitation
(Bishop et al. 2019) over the Gulf of Mexico.

3 | Materials and Methods
3.1 | Bias Correction and Downscaling Technique
To make the simulation useful for an impact study at the

local and regional level, we utilised an approach referred
to as bias correction constructed analogues with quantiles

30f18

International Journal of Climatology, 2025

85U8017 SUOWILLOD BA a1 3|t jdde au) Aq peussnob are saolLe VO ‘8Sn JO Se|n. 10} ARIqiT8UIIUO /8|1 UO (SUORIPUOD-PUR-SWIBI W00 A8 | 1M ATe1q Ut |UO//:SdNL) SUORIPUOD pUe SW | 84} 885 *[9202/T0/2T] Uo ARiqiTauljuo A8|IM Iquinjod LNosSIA JO AiseAun Aq SETOZ 90(/Z00T 0T/I0p/wW0D A8 |iMATeIq 1 Bul U0 SIBLUL//SANY WO} papeojumod ‘ST ‘5202 ‘8800260T


https://rda.ucar.edu/datasets/d314000/

40°0'0"N—

Major rivers
‘:l Mississippi River Basin (MRB)

‘I:l MRB sub regions

USA State boundaries

‘:I Built-up, Barren land

Cropland

30°0'0"N-

H Forested

‘ Grassland/Shrubland

Water/Wetland

N

>
110°0'0"W

T
100°0'0"W

T T .
90°0'0"W 80°0'0"W

FIGURE1 | Studyarea—the Mississippi River Basin and sub region boundaries are shown. The background map shows major land cover types.

The sub regions denoted are Ark—Arkansas-White-Red River basin, LM—Lower Mississippi river basin, MO—Missouri river basin, Ohio—Ohio

river basin, Ten—Tennessee river basin, and UM—Upper Mississippi river basin, respectively.

mapping reordering (BCCAQ) to downscale the coarse reso-
lution climate models to a finer resolution (Rettie et al. 2023a;
Gebrechorkos et al. 2023; Werner and Cannon 2016). This
technique has shown superior performance in removing bias
from GCMs and reproducing extreme events (Gebrechorkos
et al. 2023; Werner and Cannon 2016). BCCAQ is a hy-
brid downscaling method which combines bias Correction
Climate Imprint (BCCI—Hunter and Meentemeyer 2005)
and bias Correction Constructed Analogs (BCCA—Maurer
et al. 2010). During the downscaling process, the BCCI inter-
polates the coarse resolution climate model to finer resolution
using Quantile Delta Mapping (QDM—Cannon et al. 2015),
whereas BCCA performs the quantile delta mapping between
the GCMs and the spatially aggregated reference dataset to
GCM resolution, and the relationship between the GCMs and
the reference dataset is used to get the final bias corrected
model data. It is worth noting that the BCCI and BCCA analy-
ses are performed independently during the downscaling pro-
cess, and the BCCAQ combines the outputs. For the Climate
Imprint (CI) process, the raw GCM anomalies are interpolated
firstly to the fine spatial resolution of the observation data.
The anomaly for each day of the year is calculated by subtract-
ing from the modelled daily value the corresponding monthly
climatological value for that day. Secondly, for each day of the
year, the monthly climatology derived from monthly obser-
vational data is added to the corresponding daily anomaly of
the interpolated raw GCM daily anomaly for each grid cell.
Thirdly, the QDM is used to bias correct the interpolated raw
data obtained from the previous step. More details about the
implementation of QDM are provided by Cannon et al. (2015)

and Rettie et al. (2023b). Overall, BCCI prepares data for the
next step by applying quantile mapping as a post-processing
step to interpolate the fine scale outputs from CI. The
Constructed Analogue (CA) steps include (1) aggregating the
finer scale observed data to the GCM grid, (2) bias correcting
raw GCM using QDM, (3) searching for a subset of analogue of
the GCM weather pattern with the target pattern, and (4) de-
termining a regression coefficient between the analogue and
the target pattern to linearly combine the bias corrected CI
outputs, creating a spatially high resolution downscaled data.
A schematic process and the detailed steps for the BCCAQ can
be found in Rettie et al. (2023a).

3.2 | Definition of the Time Reaching 1.5°C
and 2°C Global Warming

According to the Paris Agreement, the 1.5°C and 2°C global
warming thresholds are relative to the preindustrial period (Shi
et al. 2018). In this study, the +1.5°C (+2°C) period is defined as
the time when the 30-year running mean of the global mean tem-
perature reaches +1.5°C (+2°C) compared to the preindustrial pe-
riod following the methodology defined by Vautard et al. (2014).
In this study, we considered the period 1971-2000 as the baseline
period. However, based on observed surface temperature (NASA-
Goddard Institute for Space Studies GISS Surface Temperature
Analysis) (Hansen et al. 2010), we estimate a climate warming
of around 0.46°C from the preindustrial period relative to the
baseline period. Thus, for each CMIP6 model, the +1.5°C (+-2°C)
period is the year when the 30-year moving average of the global
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mean temperature first reaches +1.04°C (+1.54°C) relative to the
baseline period 1971-2000. Table S2 shows the crossing time at
which each model reaches 1.5°C and 2°C global warming under
each scenario (SSP2-4.5 and SSP5-8.5).

3.3 | Sources of Uncertainties in the Projected
Climate Extremes

Usually, there are three types of uncertainty in climate projec-
tions, namely: (1) model uncertainties due to different projec-
tion produced by different models, (2) scenario uncertainty,
which is related to radiative forcing considered for projection
and (3) the internal variability which is the expression of the
fluctuation in a long-term trend in each projection. Following
the methodology proposed by Hawkins and Sutton (2009,
2010), we evaluated the uncertainty estimate in temperature
and precipitation related indices (Table 1) for the period 2015-
2099. Here the decomposition of uncertainty is computed
based on the changes of climate extreme indices, considering
the period 1971-2000 as the baseline period. In this study, the
changes in precipitation indices are expressed as percentage
following Equation (1)

I(s,m, t),
2000

1
X X Ismy
t=1971

AZ(s,m, t);y = 100 X

and the change in temperature is expressed as follows:

2000
1
AZ(s,m, g =1(5,m, 0 = 35X Y Ismb, @

t=1971

where AZ(s, m, t);4 is the changes in extreme indices I(s, m, t);4
relative to the period 1971-2000. s=1, ... ,N, m=1, ... ,N,,
andt =1, ..., N, refer to the number of SSPs, GCMs and years
respectively. Here N, N,, and N, are the number of the SSP, GCM
and time length respectively. To assess the three different types
of uncertainty cited above, the smooth mean changes of the in-
dices for all GCMs and SSPs is divided into changing signal and
the residual by fitting fourth order and second order polynomial
regression to precipitation and temperature related indices re-
spectively (Hawkins and Sutton 2009). The changes can be writ-
ten as:

AZ(s,m,t),; =i(s,m,t) + e(s,m,t) 3)

here i(s,m,t) and e(s,m,t) are the mean changes and resid-
ual respectively after fitting the fourth order and two order
polynomial regression on precipitation and temperatures in-
dices respectively. The total uncertainty can be quantified as
follows:

TH)=SH+MH)+V 4

where S(t), M(¢t), and V are respectively the scenario uncer-
tainty, the model uncertainty and the internal variability (see
Supporting Information for details steps on how each uncer-
tainty is separated and quantified).

3.4 | Signal to Noise Ratio

The signal to noise ratio (S/N) is evaluated to quantify the influ-
ence of uncertainties on changes in projected climates extreme.
It can be expressed as follows:

S/N@ty= —0 )
1.65 % \/T(t)

where i(t) denotes the average of the changes over all models and
scenarios. A larger S/N underscores that the changes in projected
climates extreme dominates the total uncertainty. In the same
vein, a small S/N (less than unit is absolute value) indicates that
the projected changes should be taken with caution since the un-
certainty dominates the changing signal and thus do not provide
suitable information for decision making. In this study we evalu-
ated the S/N for all the six sub-basins over the MRB.

3.5 | Models’ Evaluation

We evaluated the BCCAQ in simulating the spatial pattern and
the amplitude of the extreme temperature and precipitation in-
dices over the period 1971-2000 against the observational data
described in Section 2.1.2. The evaluation metrics, such as Root
Mean Square Error (RMSE), Pearson Correlation Coefficient
(PCC), and mean bias error (MBE) (see Supporting Information
for details), are also used to evaluate the ability of BCCAQ in
reproducing the extreme precipitation and temperature related
indices. Compared to raw climate models, the ensemble mean of
the downscaled models can capture well the spatial pattern of
the precipitation and temperature related indices (Figures S1 and
S2). The evaluation metrics (RMSE, PCC, and MBE) before and
after downscaling are presented in Figures S3-S6. The RMSE
and MBE amongst precipitation indices are reduced considerably
after downscaling and fall below units, particularly for R20mm
and CWD (Figure S4), implying a good performance of BCCAQ
in simulating the heavy precipitation and CWD. Similarly, the
correlation between indices after downscaling is greater than
0.8. Although BCCAQ can simulate precipitation indices, bias
still persists after downscaling, particularly for SDII and R95p
(Figure S4); however, the amplitude of biases is reduced com-
pared to bias before downscaling, where models overestimate
SDII over the MRB. Overall, for SDII and R95p, BCCAQ provides
significant improvement over the Missouri region compared to
the lower Mississippi, Ohio, and Tennessee region. Regarding the
temperature related indices, the RMSE is strongly reduced after
downscaling (Figure S6) for all the indices compared to RMSE
before downscaling (Figure S5). The correlation coefficients are
improved significantly, particularly for TX90p and WSDI. The
amplitude of MBE is also reduced significantly after the down-
scaling, except for TX90p, where a slight overestimation by a
factor of 1.8 over the MRB is noticeable (Figure S6). Similarly,
overestimated TXx in the northern Missouri region in raw mod-
els turns into underestimation after downscaling, suggesting
that the used bias corrected method may also contribute to un-
certainties in projected climate indices. Overall, the results from
the bias correction method show that BCCAQ is able to capture
the spatial pattern and considerably reduce the biases in precipi-
tation and temperature related indices.
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4 | Results
4.1 | Changes in Precipitation Extreme

We start by analysing the change in daily precipitation at
GWLL1.5 and GWL2 (Figure S7) over the MRB. Under ssp2-4.5
(Figure S7a,b), the daily precipitation increases on average by
137% (141%) at GWL1.5 (GWL2) relative to the period 1971-
2000. Likewise, daily precipitation increases on average by
139% (141%) at GWL1.5 (GWL2) under SSP5-8.5 (Figure S7d,e).
With an additional 0.5°C (from 1.5°C to 2°C) warming,
daily precipitation increases on average by 4% and 2% under
SSP2-4.5 and SSP5-8.5 respectively. Regionally, the Arkansas
region will experience the highest rate of increased daily
rainfall under SSP2-4.5 (SSP5-8.5), followed by the Missouri
region and Upper Mississippi (Table 2). However, in terms
of intensity, the Lower and Upper Mississippi, Southeastern
part of Arkansas, and Tennessee will experience the high-
est increased daily rainfall ranging from 1.8 to 2.4mm/day
(Figure S8). Over Arkansas, increased daily precipitation could
be associated with high elevated areas (Figure 1). With an ad-
ditional 0.5°C warming relative to GWL1.5, increased rainfall
is projected to occur over the entire MRB under SSP2-4.5, ex-
cept over southwest Missouri and part of the Arkansas region
where reduced daily precipitation is observed. Under SSP5-8.5,
an additional 0.5°C warming projects to increase daily rain-
fall over the northern Missouri region, Ohio, and Tennessee
region (Figure S7f). However, compared to SSP2-4.5
(Figure S7c), reduced daily rainfall with an additional 0.5°C
extends to the Lower and Upper Mississippi, Arkansas, and
southern Missouri region under SSP5-8.5 (Figure S7f). The
difference between the changes in both scenarios (SSP2-4.5
and SSP5-8.5) shows moderate increased daily precipitation at
GWL1.5 (Figure S7g); however, reduced daily precipitation is
enhanced over almost the entire MRB at GWL2 (Figure S7h,i),
particularly over the Missouri region, Arkansas, and Upper
Mississippi.

Under SSP5-8.5 (Figure 2), a regional mean increase of SDII by
3.45% and 4.65% is associated with an increased heavy precipi-
tation (R20mm) by 3.79% and 5.23% at GWL1.5 and GWL2 re-
spectively. This implies an average increase of SDII and heavy
rainfall by 1.14% and 1.37% respectively with an additional

TABLE 2 | Average percentage change in daily precipitation over
sub-basins.

SSP2-4.5 SS5-8.5
Sub-basins 1.5°C 2°C 1.5°C 2°C
Ark 285% 292% 289% 290%
UM 179% 185% 182% 185%
LM 74% 77% 75% 76%
Ten 28% 29% 27% 30%
MO 210% 215% 212% 216%
Ohio 46% 48% 46% 49%
MRB 137% 141% 139% 141%

warming of 0.5°C. The northern Missouri region encompassing
Montana, North and South Dakota, Wyoming will experience
about 12% increased heavy rainfall with additional 0.5°C cli-
mate warming associated with an additional 4%-6% increased
SDII. However, decreased heavy precipitation is observed over
the Southwestern part and centre Missouri region as the SDII
also decreases. Over the lower Mississippi (Ohio river basin),
an average decreased (increased) heavy precipitation associated
with increased SDII is more pronounced at GWL1.5 compared
to GWL2. The regional differences in the changes for both global
warming levels show that heavy rainfall is projected to be more
frequent over the Ohio river basin with an increase of about 26%
(20%) at GWL2 (GWL1.5) leading to an increase of up to 12%
with an extra warming of 0.5°C. However, heavy precipitation
events are likely to decrease by 6% over the Lower Mississippi,
Centre Missouri and Arkansas Region at GWL2 relative to
GWLL1.5. The average regional increase of CWD is about 1.61%
and 1.563% at GWL1.5 and GWL2 respectively. This implies an
overall decrease in consecutive wet days with a warm climate
over the MRB. The spatial variability shows that an increased
CWD of about 6% is observed in south and northeast MRB at
both GWL1.5 and GWL2. Decreased CWD is mostly observed
at the north Missouri river basin encompassing Montana and
Wyoming at GWLL1.5. Overall, a decreased CWD is observed
almost everywhere in the MRB with an additional warming of
0.5°C. Likewise, R95p is projected to increase by 14% and 16% on
average at GWL1.5 and GWL2 respectively. The spatial variabil-
ity shows an increase of R95p almost everywhere in the MRB at
both warming levels, except in the western border of Arkansas
region where decreased R95p by 8% is noticeable. The spatial
variability exhibit that the Ohio river basin will experience in-
creased R95p as the warming goes up. This exposes the Ohio
river basin to natural disasters such as flooding as a response
to increasing warming. Unlike the Ohio river basin, the other
parts of MRB are projected to experience a decline in R95p from
GWL1.5 to GWL2. This decrease is about 9% over Arkansas,
lower Mississippi and centre Missouri region owing to addi-
tional 0.5°C warming. It is perceived widely that extremes pre-
cipitation will increase in the context of Paris agreement targets
(Engelbrecht et al. 2015; James et al. 2017). Though, over the
MRB an additional warming of 0.5°C in the MRB exhibits a
decrease in extreme precipitation events over almost all the do-
main, particularly for R95p and CWD. The decrease in CWD is
consistent to findings of Zhao et al. (2023). In fact, over the pre-
viously mentioned areas, extreme precipitation is projected to
increase at GWL1.5 and will become more severe at GWL2. It is
noteworthy that, under SSP2-4.5 (Figure S9) changing patterns
of extreme precipitation indices are similar to changing pat-
terns under SSP5-8.5, however substantial differences exist. For
instance, under SSP2-4.5 (Figure S9), CWD decreases almost
everywhere in the MRB vat GWL1.5 except lower Mississippi
and Ohio region, compared to SSP5-8.5 where decreased CWD
is observed only in the northern Missouri region at56 GWL1.5.
Furthermore, with additional 0.5°C global warming, only the
central Missouri region will experience decreasing R95p under
SSP2-4.5 (Figure S9) which is different from what is observed
under SSP5-8.5 (Figure 2) where in addition to central Missouri,
Arkansas region and part of North MRB are also experiencing
reduced R95p. Likewise, reduced frequency of CWD with addi-
tional warming is enhanced almost everywhere the MRB under
SSP5-8.5 compared to SSP2-4.5 (Figure S9). Also, the intensity
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t-test.

of SDII shows a greater reduction under SSP5-8.5 compared to
SSP2-4.5 with additional 0.5°C warming. This demonstrates
that increasing temperature is projected to affect hydrologi-
cal cycle over the MRB such as enhanced water scarcity under
SSP5-8.5 compared to SSP2-4.5, highlighting the sensitivity of
extreme precipitation to emission scenario.

4.2 | Changes in Extreme Temperature

Over the Missouri region, the surface temperature increases on
average by 1.95°C (2.6°C) at GWL1.5 (GWL2) under SSP2-4.5
over the MRB. This corresponds to an average increase of about
21% and 28% at GWL1.5 and GWL2, respectively. Similarly,
under SSP5-8.5, the surface temperature on average increases
by 1.9°C and 2.7°C at GWL1.5 and GWL2, corresponding to
about 21% and 29%, respectively. An additional 0.5°C warming
(from 1.5°C to 2°C) increases the surface temperature by 0.68°C
(0.78°C), corresponding to about 35% (41%) temperature rise
under SSP2-4.5 (SSP5-8.5) (not shown).

Under SSP5-8.5 (Figure 3), the mean changes of ETR in the MRB
are about —0.83°C and —1.26°C at GWL1.5 and GWL2 respectively
leading to additional decrease of 0.42°C with an additional 0.5°C
climate warming. This implies a decreased ETR as the tempera-
ture goes up. The decreased ETR is associated with averages in-
creased TNn by 3.02°C and 4.32°C, which dominates the mean
changes in TXx which are 2.19°C and 3.05°C at GWL1.5 and
GWL2, respectively. A dipole distribution characterises the spatial
pattern of changes in ETR. Regionally, the ETR is expected to in-
crease by 3°C-4°C (2°C-3°C) over the western part of the MRB
encompassing Arkansas and Missouri Region at GWL2 (GWL1.5)
leading to increased ETR by 0.9°C with additional 0.5°C warming.
On the other hand, decreased ETR by 4°C (3°C) is observed over
the Upper Mississippi, Ohio, Lower Mississippi and Tennessee
Region at GWL2 (GWLL.5). This leads to a decreased ETR of about
1.6°C with additional 0.5°C warming. The changes of TNn exhib-
its an increased TNn over the entire MRB at both GWL1.5 and
GWL2. At GWLL1.5, the peak (4°C) of increased TNn is observed
at the northern part of Upper Mississippi at GWL1.5. At GWL2,
the peak (6°C) of increased TNn expands to cover the entire Upper
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Mississippi and the Ohio region. This behaviour leads to enhanced
increased TNn by 2.3°C within the Upper Mississippi and Ohio
region with an additional 0.5°C warming. Like TNn, increased
TXx is observed over the entire MRB at both GWL1.5 and GWL2,
however there is a difference in their spatial variability. The peak
of increased TXx by 3°C (4°C) occurs over the western part of
MRB encompassing the Missouri, Arkansas and north Upper
Mississippi region at GWL1.5 (GWL2). With increasing maxi-
mum temperature, warm days (TX90p) and warm spell duration
(WSDI) are increasing also over the entire MRB at both GWL1.5
and GWL2, however with less spatial variability. The average in-
creases of TX90p WSDI are about 12days and 21days at GWL1.5
and GWL2 respectively. As a result, TX90p increases by 9 days with

an additional 0.5°C warming of the climate. Likewise, the WSDI
increase by 2days and 4days at GWL1.5 and GWL2 respectively,
leading to an increase by 1.5days with additional 0.5°C warming.
Similar behaviour is observed under SSP2-4.5 (Figure S10) regard-
ing the spatial variability of the change in extreme temperatures
indices, however differences in the magnitude of change are no-
ticeable. For instance, under SSP2-4.5, TX90p increases by 21days
and 33days at GWL1.5 and GWL2 respectively. Whilst under
SSP5-8.5 the change in TX90p WSDI is about 12days and 21days
at GWL1.5 and GWL2 respectively. Our results are consistent
with Karmalkar and Bradley (2017) who found that temperature
is increasing over the United States, but with great disparity in the
magnitude of change across subregions. Our findings also align
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with results from other parts of the world (Fotso-Kamga et al. 2023;
Iyakaremye et al. 2020; You et al. 2022; Ngavom et al. 2024) where
temperature related indices are projected to increase at GWL1.5
and more under GWL2. Overall, surface temperature over the
MRB along with temperature indices are expected to increase at
both global warming targets and scenarios. The enhancement of
increased surface temperature and related indices under SSP5-8.5
shows their sensitivity to warming scenario.

4.3 | Regional Mean Changes

We start by showing in Figure 4 the mean change in extreme
precipitation over the Mississippi sub-basin under SSP2-4.5
(Figure 4a) and SSP5-8.5 (Figure 4b). The most important changes
are recorded for R95p both at GWL1.5 and GWL2 over the sub-
basins and for the two scenarios. The minimum change in R95p is
12% over the Missouri river basin for both scenarios at GWL1.5. At
GWLL1.5, the change in R95p is almost similar and generally lower
than 20%, with the exception being over the Ohio and Tennessee

region which records about 23% for both SSP2-4.5 and SSP5-8.5. At
GWL2, increased R95p generally exceeds 20% for both SSP2-4.5
and SSP5-8.5 except in the Missouri and Arkansas region where
changes are about 18%. The observed increasing changes in R95p
can exceed 30% for SSP5-8.5, particularly over the Ohio and
Tennessee river basin, suggesting a greater occurrence of extreme
rainfall over the entire MRB under both scenarios. This demon-
strates the sensitivity of the changes in R95p over the MRB with
climate scenarios. The changes in CWD are less than 5% over the
sub-basins at SSP2-4.5 and SSP5-8.5, demonstrating substantial
increased daily rainfall intensity at warmer climate. Similarly,
the increased SDIT and R20mm are also observed; however, they
barely reach 8% at GWL1.5 and GWL2 at SSP2-4.5 and SSP5-8.5.
Overall, a general increase in precipitation indices is observed over
the entire MRB.

Figure 5 shows the changes in extreme temperatures over
each sub-basin. Over the Missouri Arkansas River basin, the
increase in TXx by 2.6°C is associated with increased TNn
by 2.6°C at both GWL1.5 and GWL2 under SSP2-4.5, leading
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to the cancellation of changes in ETR; however, at GWL2, a
substantial increase in ETR by —0.3°C is associated with in-
creased TNn, which dominates the increased TXx (a). Except
for the above-mentioned regions, decreased ETR is observed
over all the subregions due to increased TNn dominating
the increased TXx in a warming climate. Under SSP2-4.5
(Figure 5a), the decreased ETR is more pronounced over
Ohio, Tennessee, and Upper Mississippi at GWL1.5. This is
justified by the increased TNn, which is twice the increased
TXx in absolute values. Indeed, increased TNn (TXx) by
3.69°C (1.86°C), 3.19°C (1.73°C), and 3.84°C (2.08°C) leads
to decreased ETR by 1.83°C, 1.46°C, and 1.75°C over Ohio,
Tennessee, and Upper Mississippi, respectively. This be-
haviour is also observed at GWL2 but with larger values. In
particular, the decreased ETR by 2.52°C and 2.63°C is as-
sociated with increased TNn by 5.08°C and 5.55°C, and in-
creased TXx by 2.58°C and 2.97°C over Ohio and Upper
Mississippi River basin, respectively. The changes in ETR,
TXx, and TNn are similar under SSP5-8.5 (Figure 5b) as under
SSP2-4.5 (Figure 5a); however, a substantial difference is ob-
served within the Missouri and Arkansas region. Indeed, in-
creased TNn is more pronounced under SSP5-8.5 compared
to SSP2-4.5 in the aforementioned regions, both in GWL1.5
and GWL2; however, an unchanged ETR is observed. This led
to a decreased ETR by 0.57°C (0.73°C) and 0.35°C (0.46°C)

at GWL1.5 (GWL2) over the Missouri and Arkansas region,
respectively. Under SSP2-4.5 (SSP5-8.5), the change on ex-
tremely warm days is about 20%/30% (10%/20%) at GWL1.5/
GWL2. Indeed, at GWL2, the extremely warm days increase
by 1.5 times more than at GWL1.5 under SSP2-4.5 (Figure 5¢).
This ratio doubles under SSP5-8.5 (Figure 5d). Similarly, the
warm spell duration index (Figure 5e) increases by four (two)
days at GWL1.5 and by six (four) days at GWL2 over the sub-
basin under SSP2-4.5 (SSP5-8.5). This means that an addi-
tional warming of 0.5°C can double the number of extremely
warm days and warm spell duration. This is a very relevant
finding since a few changes in such extreme temperatures
can have a harmful effect on crop growth (He and Chen 2022)
with a devastating impact on crop yields (Vogel et al. 2019).
Contrary to what is expected, the magnitude of changes in
projected temperature-related indices (except for ETR, TXXx,
and TNn which exhibit almost the same magnitude) decreased
from moderate (SSP2-4.5) to higher (SSP5-8.5) scenarios
(Figure 5b-f). This is not consistent with findings in Ethiopia
(Rettie et al. 2023b) and Central Africa (Ngavom et al. 2024),
where the magnitude of changes in temperature indices con-
sistently increases with the scenario.

The sensitivity of the results to forcing scenarios highlights
the prominent impacts of human activities, particularly
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FIGURE 6 | Percentage shared of uncertainty for precipitation indices depicted by subregions for the period 2015-2099.

greenhouse gas emissions leading to increased temperature re-
sulting in increased ozone levels near the surface. This further
leads to a significant impact on public health. For instance, in-
creased ozone levels could potentially result to 10,000 of ozone-
related deaths and illness in the United States by 2030 (Fann
et al. 2014). Moreover, the increased temperatures, particularly
extremely hot days (TX90p) is projected to cause premature
deaths on projected population (Mills et al. 2014), additional
annual mortality in Houston Texas (Marsha et al. 2016), and
likely 10,000 additional annual deaths due to cardiovascular
stress in the population aged 65years and above in the Eastern
United States (Limaye et al. 2018) in future emission scenar-
ios. Conversely, the decreased ETR owing to the increased TNn
dominating the increased TXx may be advantageous to infra-
structure in the United States such as rail ways tracks which
are less sensitive to thermal expansion if no other factors are
considered (Martinich and Crimmins 2019). Prolonged oc-
currence of extremely hot days and warm spell duration may
result in cracking soil, heat stress, and decreased water avail-
ability with consequences on crops yields and food security.
Numerous findings have highlighted the environmental and

economic impacts of precipitation related extreme indices over
the United States in the coming decades. In addition to flooding,
the increased SDII, extreme and heavy precipitation may result
in infrastructure failure (Chinowsky et al. 2013; Wright et al.
2012; Chinowsky et al. 2019; Melvin et al. 2016), water qual-
ity (Boehlert et al. 2015), urban drainage problems, sub-surface
water overloading, surface erosion, nutrients transport, with
consequence on crops heath and agriculture (Beach et al. 2015).
Specifically, more than 10,000 bridges could be vulnerable to in-
creased flooding due to projected increased SDII (Wright et al.
2012), and additional public expenditures ranging from $30 to
$50billion could arise if no mitigation policy is implemented
to tackle the impact of increasing temperature on US agricul-
ture during the period 2015-2100 (Beach et al. 2015). Overall,
this research is anticipated to inform researchers, emergency
managers, farmers, dam operators, insurance agents, lenders,
and policy makers about creating strategies and mitigation
plans to address the impacts of changing weather patterns on
disaster recovery, conservation practises, farming operations,
residential and commercial development, and regulations like
zoning laws.
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FIGURE 7 | Same as Figure 6 but for temperature indices.

4.4 | Projection Uncertainty

Three sources of uncertainties in climate projections are as-
sessed: (1) the uncertainty from climate sensitivity to external
forcings (model or GCM uncertainty), (2) the natural climate
variability (Internal variability) and (3) the uncertainty from dif-
ferent projection scenario (scenario uncertainty) (Hawkins and
Sutton 2009, 2010; You et al. 2022; Rettie et al. 2023a). Figures 6
and 7 present the evolution of three sources of uncertainties for
precipitations and temperature related indices respectively over
each of the sub-basins. Precipitation-related indices indicate a
general constant contribution of the internal variability (Figure 6)
to total uncertainty throughout the time. The contribution of the
internal variability accounts for about 75%, making it the largest
contributor to total variance. These findings are largely consis-
tent across different sub basins of the MRB. These results are
also consistent with the findings of Hawkins and Sutton (2010)
on a global scale who showed that internal variability is the main
source of uncertainty in projected precipitation. Internal vari-
ability has been identified also as the prominent source of un-
certainty in CDD and CWD in Ethiopia (Rettie et al. 2023b). The
second largest contributor to total variance in the MRB, is the
model uncertainty which accounts for about 20%-21% whereas
the scenario uncertainty remains marginal across sub region.

Unlike precipitation related indices, uncertainties in tempera-
ture indices (Figure 7) vary considerably amongst indices and

Arkansas

2060 2080

Year

sub-basins. The contribution of internal variability (GCMs)
to total variance is about 78%-80% (14%-20%) for ETR. These
contributions from internal variability and GCMs are consis-
tent over time across sub-regions, with contribution from SSPs
being marginal. A slight decrease in internal variability is ob-
served around 2060 before an increment just after 2080. Unlike
ETR, TNn shows a decreased internal variability associated
with a slight increased GCMs uncertainty from the beginning
of the projected period (i.e., 2015) to the end (i.e., 2099) of the
century. However, the uncertainty from SSPs remains marginal
over time. For TNn, the contribution of internal variability to
total variance ranges between 70% and 80% (18%-26%), whilst
the uncertainty from SSPs lie between 1.5% and 4%. Decreased
internal variability associated with increased GCMs and sce-
nario uncertainty are observed around 2060 for WSDI, TX90p
and TXx. These findings are largely consistent across all the
subregions. Accordingly, the uncertainty from GCM (internal
variability) accounts for about 3.5%-25.55% (73%-95%) at the
beginning of projected period to about 42%-58% (13%-44%)
by the end of the century. On the other hand, the uncertainty
from SSPs account for about 0%-0.86% at the beginning of pro-
jected period to about 18%-38% by the end of the century for
WSDI, TX90p and TXx. This is consistent with the findings of
Karmalkar and Bradley (2017) who showed important contri-
bution of scenario uncertainty to the total uncertainty in the
projected temperature over the United States at the end of the
21st century.
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4.5 | Robustness of the Projections

In this section, we quantify the signal to noise (S/N) ratio to de-
pict the influence of uncertainties on projected extreme indices
(Hawkins and Sutton 2009) and then evaluate the robustness
of the projected changes in climate extremes (Hawkins and
Sutton 2009, 2010). Figures 8 and 9 represent the S/N for precip-
itation and temperature related indices respectively for each of
the sub-basin over the MRB. SDII and R95p exhibit an increas-
ing S/N ratio for all the sub-basins whereas the number of heavy
rainfall (R20mm) and the CWD show some variability over
time. The S/N ratio is below unity despite an increase (Figure 8)
from the beginning of the projected period to 2080 (a decrease
with projection time is observed between 2080 and 2090 just be-
fore a slight increase at the end of the century) for most of the
precipitation indices. This demonstrates that the magnitude of
projected changes is smaller than the associated uncertainties.
This also implies that uncertainties associated with projected
changes make it less reliable and not well suited for decision
making. Recent studies (Madakumbura et al. 2021; Zhang and
Chen 2021; Birhan et al. 2021) showed that achieving reliable
projection for precipitation has been a challenge due to its high
uncertainty. One of the reasons of this challenge could be the in-
ability of climate models in adequately simulating the EI Nifio—
Southern Oscillation (ENSO-Korecha and Barnston 2007)
which is one of the most important climate systems governing
extreme precipitation across the MRB (Dommo et al. 2024) and
the entire United States. Since most of the state-of-the-art global
climate models fail to realistically simulate ENSO (Beobide-
Arsuaga et al. 2021), the long-term projection of climate extreme
might be affected as well. Therefore, the magnitude of the pro-
jected precipitation related extreme indices in this study might
be considered with caution.

Largely consistent across the temperature-related extreme indi-
ces and for all the sub-basins (Figure 9), the S/N ratio increases
with time except for the ETR which shows a decreasing trend.
For almost all the sub-regions, the S/N ratio remains below
unity. This demonstrates that the uncertainties dominate the
magnitude of the changes over the MRB and hence the projected
changes are not reliable. However, over the Upper Mississippi
and Arkansas region, extremely warm days and warm spell du-
ration reach its maximum (above unity) in mid-century (~2060)
before a slight decay is observed until the end of the century. The
peaks around 2060 could be related to the shifts in the contribu-
tion of uncertainties from different sources (i.e., SSPs, GCM and
internal climate variability) (Figure 7).

5 | Discussion

Understanding changes in precipitation variability is important
for a complete explanation of the hydrologic cycle response to
global warming and its corresponding impacts. Future changes
in precipitation and precipitation related indices are region de-
pendent generally around the world. This study provides an
assessment of model-projected precipitation and temperature
extreme indices over the MRB at 1.5°C and 2°C global warming
under SSP2-4.5 and SSP5-8.5. Although biases still persist, the
bias corrected method shows significant improvement in simu-
lating precipitation and temperature related indices. However,

the corrected methods could be an additional source of uncer-
tainties in projected climates extreme (Lafferty and Sriver 2023).

Our results also reveal that, under both scenarios (SSP2-4.5 and
SSP5-8.5) significantly increased heavy precipitation (R20mm)
is observed mainly over Ohio and northern Missouri region.
This increased R20mm goes from up to 2.4days at GWLL.5 to
up to 4days at GWL2 (not shown). Similarly, significantly in-
creased SDII observed in Ohio region goes up to 2.4mm/day
probably due to increased daily precipitation (Figures S7 and S8).
Contrary to R20mm, the changes in SDII are significant almost
every here in the MRB, except in the northeastern part of the
Arkansas region. Recent findings from Akinsanola et al. (2024)
highlighted that under SSP5-8.5, the dynamics components of
the moisture budget are the main factors contributing to in-
creased daily precipitation over the US during the winter season.
Largely consistent at both warming levels (GWL1.5 and GWL2)
and both scenarios (SSP2-4.5 and SSP5-8.5), the significant in-
creased SDII is accompanied by significant increased R95p and
R20mm almost everywhere in the MRB, however, they are en-
hanced over the Lower Mississippi, Ohio and Tennessee region.
Moreover, R95p exhibits high regional changes, reaching at least
20% of changes under SSP2-4.5 and SSP5-8.5 at GWL1.5 and
GWL2. The combined effect of increases of heavy and intense
rainfall can leads to strong flooding risks over lower Mississippi,
Ohio and Tennessee region with considerable impacts on econ-
omies, delaying planting, crops damage and other flood related
damages (Mantua et al. 2010; Changnon et al. 1997; Rosenzweig
et al. 2002). Our results are consistent with findings from
Akinsanola et al. (2020) who have found statistically robust
increases in SDII and R20mm over the entire US, particularly
during the winter season.

Regardless of the considered scenarios here (SSP2-4.5 or
SSP5-8.5) temperature related indices (TNn, TXx, TX90p,
WSDI) are projected to increase over the MRB. ETR exhib-
its a dipole spatial distribution with decreases over the Upper
Mississippi, Ohio and Tennessee region and decreased over
the western part of the domain encompassing Missouri,
and Arkansas region. However, Figure 5 shows an average
decreased ETR over all the sub-basins, resulting from in-
creased TNn dominating the increased TXx. Under SSP2-4.5
(SSP5-8.5) an additional 0.5°C warming (i.e., from GWL1.5
to GWL2) increases in the changes of warm days and warm
spell duration by 50% (100%). This implies a strong sensitiv-
ity of temperature changes with forcing scenario. However, it
is worth noting that under SSP5-8.5, changes of TX90p and
WSDI are smaller than under SSP2-4.5 both at GWL1.5 and
GWL2 (Figure 5). For instance, TX90p increases by 20days
under SSP2-4.5 and by 10days under SSP5-8.5 at GWL1.5.
Similarly, WSDI increases by 30days under SSP2-4.5 and by
20days under SSP5-8.5 at GWL2. This can be explained by the
threshold crossing time amongst the models considered in this
study, rather than by a higher temperature under SSP2-4.5
compared to SSP5-8.5 as might be surmised. For instance,
1.5°C target is projected to be reached on average around 2031
with a standard deviation of 8.0years under SSP2-4.5 and on
average around 2027 with a standard deviation of 6.5years
under SSP5-8.5. Likewise, the 2°C target is projected to be
reached on average around 2051 with a standard deviation of
15.0years under SSP2-4.5 and on average around 2040 with
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FIGURE 8 | Signal to noise ratio of the precipitation extreme indices depicted over each of the sub-basins.

a standard deviation of 8.0years under SSP5-8.5. This high
inter-model variability on the threshold crossing time (see
Table S2) under SSP2-4.5 could be the source of the large
changes observed compared to SSP5-8.5.

The signal to noise ratio shows values below unity for tempera-
ture and precipitation related indices. This is contrary to what
Karmalkar and Bradley (2017) found using a set 31 climate
models with Representative Concentration Pathways (RCP),
4.5 and RCP8.5, to diagnose changes in mean temperature over
the US. In fact, the projected precipitation and temperatures
related extremes remain highly uncertain due to internal vari-
ability (Figures 6 and 7). In this work, we acknowledge that the
use of only one realisation for every climate model is insuffi-
cient to capture the full effect on internal variability that plays
a significant role in driving regional climate fluctuations over
years or decades. Whilst this shortcoming is not expected to
have a significant impact on our conclusions, we suggest that
uncertainty estimated be treated as acceptable guidelines. The
decomposition of uncertainty in this study highlights the pre-
dominance of internal variability from the beginning to the
end of the century, follow by the model uncertainty and the
substantial contribution of uncertainty from climate scenarios.
This implies that for futures research, effort should be put into
using a large set of climate models rather than climate scenarios.
Because of the predominance of internal variability, we tested

the performance of each of the models in simulating the precipi-
tation and temperature for the period 1971-2000 with respect to
the observational data. The models whose bias stand within the
range of +1.5 interannual standard deviation are identified as
a better performing model. For the two models (CanESMS5 and
KACE-1-0-G) that stand out, the internal variability predomi-
nates (not shown). We hypothesise that even a perfect model's
simulation will not necessarily prevent chaotic internal variabil-
ity from arising (Mitchell et al. 2013; Tebaldi and Knutti 2007;
Deser et al. 2012). Furthermore, a deep understanding of what
drives climate and its variability on a local and regional scale
is critical for future generations of climate models and future
climate changes assessment. Climate extremes often arise due
to internal variability and external forcings. However, internal
variability can be large enough to overwhelm external forcings
even on multidecadal time scale (Jain and Scaife 2022; Fischer
et al. 2013). Some studies (Deser et al. 2012, 2014) highlighted
that future precipitation and temperature projections over North
America on local and regional scale could be subject to internal
climate variability. For instance, Hong et al. (2025) highlight
that the amplitude of El Nifio Southern Oscillation (ENSO) and
ENSO-induced atmospheric teleconnections are projected to
be enhanced resulting to significant increases in US hydrocli-
mate extreme events, with differences across region. Therefore,
the ability of models to properly simulate the variability of
some large scale atmospheric and oceanic circulation such as
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ENSO, Pacific Decadal Oscillation (PDO) and North Atlantic to experience major reduced daily rainfall at GWL2 under

Oscillation (NAO) are critical for the assessment of internal SSP5-8.5.
climate variability and future climate projections in order to
meet the expectations of decision makers for accurate climate
predictions.

3. With an increase in climate warming, very heavy rainfall
(R95p) associated with the increased simple daily intensity
index (SDII) is projected to significantly increase every-
where in the Mississippi river basin compared to the pe-
riod 1971-2000. Increased SDII and R95p are enhanced
at GWL2 compared to GWL1.5 under both scenarios.
Similarly, heavy precipitation (R20) is projected to signif-
icantly increase over the Ohio river basin and Northern
Missouri at both warming level and projected scenario.

6 | Conclusions

This study investigates the changes in precipitation and tem-
perature related indices under SSP2-4.5 and SSP5-8.5 at 1.5°C
and 2°C global warming using a set 12 high resolution CMIP6

models over the Mississippi river basin at its corresponding 4. Temperature related indices (TNn, TXx, TX90p, WSDI)
subregion. The spatial variability of the changes and the uncer- are projected to increase over the entire Mississippi River
tainty associated with projected changes are investigated. The basin, except for ETR which exhibits otherwise. The de-
main findings can be itemised as follows: creased ETR results from the mean changes in TNn dom-
inating the mean change in TXx as the temperature goes
1. Average daily precipitation is projected to increase under up. This implies in absolute value a rapid increase in TNn
scenarios SSP2-4.5 and SSP5-8.5 at GWL1.5 and GWL2. compared to TXx with global warming and warming sce-
However, changes at GWL2 exhibit a reduced daily precip- nario over the Mississippi River basin.

itation compared to GWL1.5. This reduced daily rainfall is
highly sensitive to warming scenario. This could result to
more water scarcity at GWL2 under SSP5-8.5 compared to
SSP2-4.5 over the Mississippi River Basin.

5. Internalvariability dominates the uncertainty estimates for
temperature and precipitation indices over the Mississippi
river basin, with almost no contribution from scenarios.

2. Regionally, the Missouri river basin, Arkansas region and Overall, this study provides insights on the precipitation and
part of Upper and lower Mississippi region are projected temperature behaviour over the Mississippi river basin, at 1.5°C
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and 2°C global warming. Whilst we acknowledge that effort
should be deployed in using a large set of climate models with
many realisations, this work provides information on the poten-
tial upcoming water scarcity with consequences on agriculture
and ecosystems.
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