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Abstract

Understanding the intricate dynamics of precipitation patterns is essential for effective
water resource management and climate adaptation in Missouri. Existing analyses of
Missouri’s climate variability lack the spatial granularity needed to capture nuanced
variations across climate divisions. The Missouri historical agricultural weather database,
an open-source tool that contains key weather measurements gathered at Mesonet stations
across the state, is beginning to fill in the data sparsity gaps. The aim of this study is
to identify core patterns associated with ENSO in the global wavelet output. Using a
continuous wavelet transform analysis on data from 32 stations (2000–2024), we identified
significant precipitation cycles. Where previous studies used just four Automated Surface
Observing Systems (ASOSs) located at airports across Missouri to characterize climate
variability, this study uses an additional 28 from the Missouri Mesonet. The use of a global
wavelet power spectrum analysis reveals that precipitation patterns, with the exception
of southeast Missouri, have a distinct annual cycle. Furthermore, separating the stations
based on the significance of their ENSO (El Niño–Southern Oscillation) signal results in the
identification of three precipitation zones: an annual, ENSO, and residual zone. This spatial
data analysis reveals that the Missouri climate division boundaries broadly capture the
three precipitation zones found in this study. Additionally, the results suggest a corridor
in central Missouri where precipitation is particularly sensitive to an ENSO signal. These
findings provide critical insights for improved water resource management and climate
adaptation strategies.

Keywords: Missouri; precipitation zones; continuous wavelet transform; ENSO

1. Introduction
Meteorological time series measures often contain embedded complex waveform

qualities. Signals within these systems may arise from both stationary and non-stationary
influences, originating from local/regional or large/global-scale processes. These signals
may be embedded in super-position, and standing wave forms may arise due to phase
locking. Irregular and non-continuous effects in underlying signals can impact local
daily precipitation measurements. This study examines the capability and benefits of
augmenting data gathered from Automated Surface Observing Systems (ASOSs) operated
by the National Weather Service (NWS) and located at airports with Missouri Mesonet
data [1].
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Previous studies analyzing long-term time series data for Missouri often utilized yearly
or monthly temperature and precipitation from the four main NWS stations, employing
Fourier analysis (e.g., [2,3]). These and other studies (e.g., [2–5]) have demonstrated a link
between ENSO-related variability and temperature and precipitation data across the state,
which is also reflected in staple crop yields [4]. Moreover, these broader ENSO-driven
climatic variations, including jet stream displacements across North America, are known to
influence a range of phenomena relevant to regional weather, such as tornado outbreaks,
temperature and precipitation anomalies, storm track locations, and both tropical and
extratropical circulation anomalies (e.g., [6–9]). Additionally, ENSO and other interannual
variations in the general circulation are known to influence the circulation patterns and
surface variables regionally for different regions of the globe, and these have been studied as
well (e.g., [10–15]). Some of the above studies have examined the frequency of drought and
their relationship to interannual variability (e.g., [4,5,13]). In this study, only precipitation
data will be used. By augmenting the NWS data with Mesonet data, this study examines
the geo-spatial organization of ENSO signal variability within precipitation across Missouri
between 2000 and 2024 to better understand the potential regional implications.

Other studies have identified regional precipitation variability in local regions across
the globe (e.g., [16–20]). The work of [16] used wavelet power spectra to identify an-
nual variability within a localized region of Brazil (São Francisco River basin). Then,
studies such as [17–19] examined larger regions in order to find smaller-scale regions or
basins where coherent signals for precipitation variability are found on the interannual
time scale and then due to ENSO or other phenomena. Also, [20] performed a similar
analysis globally to identify regions that are sensitive to trends and variability in precipi-
tation, and, in particular, how regular these patterns are and the risk they imply for local
water management.

In this study, cyclic patterns are identified, and collection errors minimized using the
Continuous Wavelet Transform (CWT) analysis methodology outlined in the ‘Practical
Wavelet Guide’ [21]. The individual station analyses are spatially aggregated and visu-
alized to assess the consistency of the composite visual representation. This study uses
Missouri Mesonet data to establish a foundation for comparing how this granular data
source enhances our understanding of the distribution of regional sensitivities of ENSO to
precipitation across the state.

The wavelet analysis reveals multiple recurring cyclic patterns, with primary periods
of approximately one and six years. Signals, also referred to as periods of interest described
throughout the remainder of this document, are at or above the 95th percentile and are
considered significant for this study. Some stations display up to three signals, using CWT
analysis. Some stations lack any discernible signals for diagnostic use. Neither temporal
continuity nor spatial homogeneity in power distribution, displayed in the scalogram, is
observed in any station examined. Not only are there non-continuous properties through-
out each discrete station’s temporal power signal, but there exists a non-uniform spatial
distribution of stations that share the ENSO signal. The distributions of shared signal
patterns among stations form three primary regional clusters across the state: stations with
only an annual signal, stations with both annual and ENSO signals, and stations with
neither. Consequently, given this study’s implication of a non-uniform spatial distribution
of clustered shared signal patterns among stations across the state, precipitation predictions
using ENSO measures need to consider this spatial irregularity and implement regionally
specific forecasts based on the precipitation zones highlighted herein.
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2. Data and Methods
2.1. Background: Complex Wavelet Transform

A key element of this study is to assess the cyclic nature of precipitation in Missouri.
This study uses the practical wavelet guide [21] to perform a wavelet analysis to identify
significant cycles in Missouri daily precipitation data to use for spatial diagnostic and
comparison calculations.

This time series spectral analysis using wavelets provides a method to illustrate
temporal locality, non-stationary behavior, and vacillations in duration and strength [21].
The decomposition of the time series, particularly in geophysical processes, in time–space,
has allowed for the identification of low- and high-frequency phenomena consistent with
the scale on which the wavelet was chosen. Consistent with previous studies, a Morlet
wavelet with a central frequency (Figure 1) will serve as the band-pass filter and the
“mother” wavelet for this study [21–24]. Additionally, the appropriateness of the filter
shape applied to rainfall data and the Morlet wavelet’s ability to capture its peaks and
troughs were explored in similar studies, including earlier work on Missouri weather [2,25].
The utilization of the CWT has the advantage of providing information in a spatial context
by the manipulation of a plane wave bounded in a Gaussian envelope given by

ψ0(η) = π
−1
4 eiω0ηe

−η2
2 , ω0 = 6. (1)

 

Figure 1. Example of the Morlet mother wavelet function, including real (dashed) and imaginary
(solid) lines [22].

This continuous wave function acts as a band pass filter, generating an energy profile
scaled in frequency space. The resulting 2D power spectra exhibit angular sensitivity and
spatial selectivity, proportional to the selection of ω0. Specifically, they describe a complex
sine wave at a central frequency ω0, which is then localized in time by being multiplied

by a Gaussian envelope (the e
−η2

2 term). The normalized constant term π
−1
4 was used in

the wavelet procedure to fix the scaling and allow for a comparison of coefficients across
different scales. The oscillatory component of the wavelet came from eiω0η , where ω0 is the
central frequency of the oscillation, and η is the dimensionless time parameter that allows
the Morlet wavelet’s fundamental shape and properties to be defined independently of the
specific scale and position at which it is used to analyze a signal. The tuning procedure
for ω0, to maximize both localization and frequency precision, was found in the Torrence
and Compo guide [21]. The mother wavelet with a central frequency (ω0) of 6 resulted in a
balanced approach to observe the oscillation of both power and frequency over time.

Where the scalogram is a useful tool in looking for distinct power locality in time, the
global wavelet spectrum is a reduction, representing power over the entire dataset. When
visualized, these calculations produce a line graph where the wavelet power spectrum
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along the confidence interval can be represented ‘globally.’ This global averaging over all
local wavelet spectra provides a way to isolate trends over the entire time series [16].

Wn
2
(s) =

1
N ∑N−1

n=0 |Wn(s)|2 (2)

In the global wavelet spectrum equation, Wn
2
(s), s represents the wavelet scale,

directly correlating with the period of the analyzed feature. Larger scales correspond to
longer-term trends, while smaller scales capture more rapid fluctuations. Wn(s) denotes
the local wavelet transform at a specific time point n and scale s, quantifying the presence

of a particular frequency component at that moment. Squaring its magnitude, Wn(s)
2,

yields the local wavelet power spectrum, or scalogram, which indicates the energy of
that frequency component at that specific time. Finally, N signifies the total number of
data points in the series, ensuring that the summation encompasses the entire dataset. By
averaging these local power spectra over all time points for a given scale, the global wavelet
spectrum effectively filters out transient events, bringing to light significant and persistent
patterns that characterize the entire time series.

2.2. Dataset

The daily precipitation data used in this study came from 28 Missouri Mesonet stations
and four NWS ASOS airport stations. The Mesonet data were obtained through the Missouri
historical agricultural weather database, part of the University of Missouri’s Extension
program [1]. These data are publicly available and free to access. The four airports
referenced in this study were located primarily across the middle of the state, with the
exception of one, located in the southwestern part of the state, near Springfield, MO. These
four airports comprised the dataset used to characterize Missouri climate measures in
previous studies [3]. The daily precipitation measurements for the additional four airports
were provided by the Midwest Regional Climate Center (MRCC) [26]. The stations and
counties used in this study can be seen in Figure 2.

  
Figure 2. A map of the 28 Missouri Mesonet stations (stars) and four ASOS stations used in this
study (solid squares). Missouri, centrally located within the conterminous United States, is a state
characterized by diverse topography, including the northern plains, the Ozark Plateau to the south,
and the Mississippi and Missouri River floodplains. In this map the scale is 1.75 cm = 100 km.
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The Mesonet data provided a consistent measure of daily precipitation records year
over year. The sensor located at the sites used for precipitation collection was the Camp-
bell Scientific TE25 tipping bucket. The operating temperature for these sensors is 0◦ to
50 ◦C, recording 0.01 inches (0.254 mm) per tip. The instrument’s accuracy is 1%, up to
2 inches (50 mm/hr), and the gauges are placed one meter above ground within the weather
station’s footprint [27].

Consistent year-round precipitation measurements were a necessity for this study,
despite their inherent sources of error. The Mesonet rain buckets were unheated, which
potentially under-recorded accumulation due to snow blowing out of the bucket. The
presence of frozen precipitation in the collection bucket also likely led to delayed reporting
since the ice or snow had to melt at ambient temperatures before being measured as liquid.
Accounting for these potential errors will be covered in the Section 2.3.

2.3. Methods

The ENSO signal has been found to modulate sensible weather in Missouri. Observing
whether there was a measurable, comparable, and cogent signal in the precipitation dataset
was the first goal [3]. A similar study, conducted in the São Francisco River basin, used a
complex wavelet approach to identify precipitation zones and found regional consistency
in their results [16]. A similar approach was used in this study to define regions of relative
spatial uniformity in signal patterns over Missouri. To accomplish this, defining the
individual global spectrum pattern of each station objectively prevented a biased visual
composite. Consequently, this analysis yielded a direct, unmanipulated representation of
the station data. This ensured minimal bias and good mapping visualization.

2.3.1. Data Preprocessing

First, the preprocessing of the dataset was conducted by treating missing and trace
measurements as non-measurable values (zero). The precipitation data from the Mesonet
is raw in nature. The interpretation has to account for biases in the design of the sensor
and special consideration for the type of precipitation. Frozen precipitation with unheated
sensors introduces the potential for spectral leakage due to spikes in precipitation measure-
ments. This study did not attempt to isolate these discrete errors. One could use external
present weather information and/or temperature data to generate a scheme to spread
the power over the duration of the event, lowering the power. Mitigating the impact of
discrete spikes and shifts is naturally handled through this wavelet procedure. Unlike a
Fourier transform, the CWT allows for a mix of localization and power over time, as well
as signal filtering using a Gaussian bounded wavelet. The ability to determine cyclic power
fluctuations over time also allows observational dominant signal comparisons across the
stations. Additionally, the wavelet acts to dampen the power associated with discrete
spikes. This procedure is also designed to give the ability to discriminate against period
length, allowing for the identification of annual and ENSO signals, while minimizing the
potential contamination of errors on the order of the diurnal timescale.

2.3.2. Wavelet Configuration

The parameters for the initial survey of precipitation patterns at the Mesonet stations
across the state were tuned for continuous daily data. The data were first detrended by
subtracting the fitted linear trend from the original data using a polynomial of degree
one. The detrended data were then normalized by dividing each value by the standard
deviation, thus de-emphasizing absolute values and changes. The configuration of the
‘mother’ Morlet wavelet had a central frequency of 6 (ω0 = 6). The time interval (δt) was set
to one day, and the starting scale (s0) was 60 days. The decision to employ a 60-day starting
scale was graphically motivated, enabling a clear visualization of the low-frequency range
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within the cone of influence (COI) on the scalogram. Consequently, this choice concurrently
excluded coefficients originating from high-frequency sampling errors. The scale resolution
(dj) was set to 1/12, and the number of sub-octaves (J) was computed as 7/dj, following
the practical guide from Torrence and Compo [21]. A signal was considered significant if
its power reached or surpassed the 95th percentile.

2.3.3. Station Selection Criteria

An exploratory analysis conducted after data preprocessing assessed the patterns and
general behavior of each station. The analysis employed fixed wavelet parameters for
comparative purposes (Figure 3). The peak period(s) was compared to the COI. For stations
that had an ENSO signal, the COI had to be greater than the peak period that fell in the
2–7-year range. For this reason, only 32 of the 50 possible stations examined were utilized.
Stations that were not included generally had a COI that fell below 5.5 years. An example
of a borderline ENSO station classification case, with a potential ENSO signal falling above
the COI, that was not used was Columbia–Capen Park. Even though it had 14 years of
available data, the max period within the COI of 5.11 did not capture a 5.43-year ENSO
signal. Padding the dataset could have mitigated the exclusion of this station, but because
this station was co-located with other stations with clear ENSO-like signals, the omission
did not distort the overall visual representation of the data over the state.

Figure 3. Daily precipitation data time series from the Sanborn Field Mesonet station (top line graph).
The scalogram for the wavelet power shows periods of high and low power over time (bottom graph).
The COI (hatched region) defines where edge effects become significant. The thick black contour
encloses regions greater than 95% confidence for a red-noise process with an α coefficient of 0.148.
The global wavelet power spectrum is shown, with the 5% significance level indicated by the dashed
line, calculated against a red-noise background (bottom-right line graph).

Following the exploratory analysis, a global wavelet analysis was conducted on
the remaining 32 stations. Each station’s peak signals were analyzed separately and
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quantitatively, to reduce subjective spatial biases. Signal strength may vary across the time
series, with power often distributed non-uniformly, as seen in the power spectrum shown
in Figure 3. Although the power may not be consistent, the integrated power in the global
wavelet spectrum acts to synthesize the most significant cycles based on the summary
power throughout the entire time series. In the case of the Mesonet precipitation data from
the Sanborn Field site, there was a clear annual and ENSO signal (Figure 3). The global
wavelet spectrum highlighted the dominant cycles in the entire dataset, showing the annual
and ENSO patterns as distinct peaks. These peaks represented the overall strength of these
cycles across all time. Even though the statistical importance of these cycles varied from
year to year (as seen in the scalogram (Figure 3)), their underlying presence and influence
were fundamental. After each station was analyzed, it was clear a two-step classification
scheme was to be used to compress the signal types from sub-classifications A–H to just
three classifications (A, B, C) found in Table 1.

Table 1. The two-step classification system followed first assigning a sub-classification (A–H) to the
global wavelet spectrum patterns. The second step, used in the data visualization, distilled the eight
unique patterns into three pattern types (A–C). (*) Sub-classifications C and D fall under the no or
residual classification.

Signal Type Classification Scheme

Single Signal Sub-Classification Classification

Annual Signal A A
ENSO Signal B B

Between Annual and
Biennial Signal C * C

Sub-Annual D * C
Multiple Signals
Annual + ENSO E B

Annual + between Annual
and Biennial Signal F A

Annual + Sub-Annual G A
None/Residuals * H C

2.3.4. Two-Step Classification

The two-step classification system followed a binning scheme to isolate bin-specific
characteristics found from each station’s global wavelet spectrum pattern, delineating
regions with a significant ENSO signal to those without an ENSO signal (e.g., [21]). The
eight bins fell into three signal categories (Single, Multiple, None/Residual). For this
pre-sorting step, an example of sub-classification A, used in the identification of region A, is
used to describe a station that exhibits a significant annual signal. Since this study focuses
on delineating regions based on annual versus ENSO sensitivity, special consideration was
given to cases outside these bounds. For instance, if a station exhibited both an annual
signal and other signals with periods outside the 2–7-year ENSO cycle, it was classified as
“annual,” potentially falling under sub-classifications F or G within classification A. An
example of the classification process can be seen in Figure 4, where the A graph depicts an
annual signal, B an ENSO signal along with the annual signal, and C a station void of an
annual or ENSO signals. Although the stations generally had strong signals that fell into
annual or ENSO buckets, the level of complexity did warrant a pre-classification to act as a
pre-sorting step.
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Figure 4. Frequency patterns identified from global wavelet power spectra: (A–C) Pattern (A)
(dominant 12-month frequency), Pattern (B) (ENSO-related), and Pattern (C) (no significant frequency
or residual). The abscissa represents the period in years, and the ordinate is wavelet power (unit is
inch2). The solid line is wavelet power and the dashed line is the 95% confidence level.

After the pre-sorting is performed through the initial sub-classifications step, the eight
patterns are distilled down to three. Within the A classification, there is a single annual
signal in the single-signal category (A), an annual signal along with a signal between
one and two years (F), and annual and sub-annual (G) signals. Sub-classifications within
classification B are a single ENSO signal in the single-signal category (B) and an annual
and ENSO signal (E) in the multiple=signal category. Sub-classifications within C denote
stations with global wavelet patterns that did not fall in classifications A or B. Stations
within classification C were further divided into three sub-classifications: stations with no
significant signals (H), stations with a single signal between one and two years (C), and
stations with a single sub-annual signal (D).

2.3.5. Visualization Techniques

Next, the visualization of the classification scheme is at the core of this exploratory
study. Once the classifications are assigned to each station, a nearest-neighbor scheme
is then used to interpolate the classifications across the state. This technique, which is
a straightforward and computationally efficient method, was used to estimate values at
unobserved locations based on the closest available data points. In the context of spatial data
applied to the classification of precipitation zones, this technique assigns each grid cell the
class value of the single nearest observed data point (station). This process involves creating
a dense grid covering the area of interest and then, for every point on the grid, identifying
the closest original observation point in the dataset. The class label of that closest observed
point is then directly assigned to the grid cell. Consequently, the resulting interpolated map
displays distinct, Voronoi-like regions where all points within a given area are classified
identically to their nearest station, effectively partitioning the geographic space into zones
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defined by the influence of the closest measurement. This method is particularly useful
when discrete, exact classifications are desired, and it avoids the smoothing effects inherent
in other interpolation techniques like linear or Kriging methods [28].

This method offers clear and intuitive visualization that prioritizes data integrity over
esthetic enhancements common in surface interpolation approaches. The grid used was a
quarter-degree grid for both interpolation and for calculating the nearest distances between
the stations. Visualization of the station data centered around two mapping schemes: the
four ASOS stations and the four ASOS stations along with the additional Mesonet stations.
The comparison of both allowed for general remarks on using more stations along with a
description of metrics underlying each sample for a more in-depth analytical assessment.
The regions comprising distinct classifications were used to demarcate precipitation zones
that would share the same A, B, and C identifier. The term “regions” was used interchange-
ably with “zones.” If the regions had a mottled appearance once mapped, “zones” would
then be used to further define these fragmented regions.

The interpolation scheme effectively revealed how additional stations improved spa-
tial coverage, providing metrics such as the average nearest-neighbor distance and coverage
percentage. These were calculated on a quarter-degree grid with a quarter-degree distance
threshold for adjacent cells, ensuring no double-counting of overlapping grid cells. Sim-
ilarly, insights into station distribution were gained from the interquartile range (IQR)
of distances; this method, by focusing on the middle 50% of the data, minimized outlier
influence. Consequently, the magnitude of this spread was relative to the information con-
tained within the state’s boundaries, acknowledging that peripheral stations contributed
less information. Furthermore, these distance metrics were determined using geopy’s
geodesic function, which, in turn, implemented Vincenty’s inverse formula to account for
the ellipsoidal shape over the domain (Missouri) [29,30]. By taking this extra step, the
domain could be accurately described, and the interpolated data clearly visualized on the
uniform quarter-degree grid.

3. Results
This analysis highlights the utility of the Missouri Mesonet to augment spatial gaps

in station coverage found from using only the four ASOS stations. Prior to this study,
the spatial context of ENSO-related weather sensitivities was relegated mainly to a swath
across the middle of the state. The increased spatial resolution provided by the additional
Mesonet stations enhanced the robustness of this analysis. Along with the visualization
comparisons between the two mapping schemes, the spatial metrics also provide a measure
of fidelity from infusing the additional Mesonet data.

Through the two-part classification scheme, three distinct patterns were identified,
and their visualization delineated three precipitation zones based on the global spectrum
patterns. Figure 5 gives a survey of the three patterns identified using the two-part classifi-
cation scheme applied to nine of the thirty-two stations. It is important to note that signals
below the 95th percentile in these global wavelet spectra graphs, despite potential strong
alignment with regional cyclic patterns, were not considered discriminatory attributes for
classification purposes. For example, if any signal fell below the 95% threshold, no special
considerations were given due to potential spatial implications to maintain consistency
and subjectivity.
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(A)

(B) 

(C) 

Figure 5. Station-based analysis of global wavelet power spectra reveals three classification patterns:
top row (A), middle row (B), and bottom row (C). The abscissa represents the period in years and the
ordinate is wavelet power (unit is inch2). The solid line is wavelet power and the dashed line is the
95% confidence level.

Each station’s county, cone of influence (COI), peak period(s), sub-classification, and
classification are found in Table 2. According to the station information, the COI column,
denoting the largest potential significant period, is proportional to the length of the dataset
available. For this reason, the average time found to capture potential ENSO signals was
23 years, with 21 of the 32 stations having a full 25-year period. The maximum potential
period that fell within the cone of influence for each station is found in the COI column,
with an average of 5.84 years. Although the overall average falls short of the classification
range of 2–7 years for ENSO, 28 of the 32 stations did have COIs that extended beyond
7 years. The peak period column identifies any significant peaks within the COI. The
average peak of stations that fell into a B classification was 5.48 years. In the ENSO
classification scheme, removing Lamar as an outlier (3.34 years), the average peak period
was 5.61 years. Of the 32 classifications, 11 fell in the A, 14 in the B, and 7 in the C
categories, respectively.

The spatial distribution of classifications across Missouri, when viewed in conjunction
with climate divisions, provided an illustrative analysis and highlighted the continuous
areas of homogeneous classified stations. For the contextual clarity of augmenting the
airport ASOS station datasets, the first map (Figure 6) described will be the four-ASOS-
station mapping scheme. The Columbia Regional and St. Louis International airports
were classified as falling into region A and the Kansas City International and Springfield–
Branson National airports into region B. For illustrative purposes, the ASOS station pattern
shapes have been filled. The two regions, which will now be used to delineate two
precipitation zones, halve the state into an approximate western zone (A) and eastern
zone (B). The western portion of the state (climate divisions 1, 3, and 4) displays a region
with precipitation patterns devoid of ENSO influences. Climate divisions 2, 5, and 6, with
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precipitation patterns with an ENSO signal, comprise the eastern portion of the state. In
this case, with only four stations, no station fell in category C.

Table 2. Classification results of the wavelet analysis for Missouri stations, based on cone of influence
(COI) and peak period(s). Includes county, sub-classification, and final classification.

Location County COI Peak Period(s) Sub-Class Class

Albany Gentry 9.14 Annual A A
Auxvasse Audrain 9.14 Annual, 5.76 E B
Brunswick Carroll 9.10 Annual A A
Cardwell Dunklin 9.14 None H C

Charleston Mississippi 9.14 None H C
Clarkton Dunklin 8.92 None H C

Columbia—BREC Boone 5.73 Annual, 5.43 E B
Columbia—JFG Boone 6.04 Annual, 5.43 E B

Columbia—Sanborn Boone 9.14 Annual, 5.43 E B
Columbia—South Farm Boone 9.14 Annual, 5.43 E B

Cook Station Crawford 9.14 Annual A A
Corning Atchison 9.14 0.34, annual G A

Delta Cape Girardeau 9.14 1.62 C C
Glennonville Dunklin 9.14 Annual, 1.62 F A
Green Ridge Pettis 7.40 Annual, 5.76 E B

Hayward Pemiscot 8.99 None H C
Lamar Barton 9.14 0.48, annual, 3.84 E/G B

Linneus Linn 9.14 Annual A A
Monroe City Monroe 8.99 Annual, 5.76 E B

Mountain Grove Wright 6.28 0.48, annual G A
Novelty Knox 9.14 Annual, 5.76 E B

Portageville Pemiscot 9.14 1.62 C C
Round Spring Shannon 6.97 Annual A A

St. Joseph Buchanan 9.14 Annual A A
Steele Pemiscot 9.13 None H C

Vandalia Audrain 5.73 Annual, 5.43 E B
Versailles Morgan 7.58 Annual, 5.76 E B

Williamsburg Callaway 6.82 0.68, annual, 5.76 E/G B
Columbia NWS Boone 9.14 Annual, 5.43 E B

Kansas City NWS Platte 9.14 Annual A A
Springfield NWS Greene 9.14 0.51, annual G A
Saint Louis NWS St. Louis 9.14 Annual, 5.76 E B

The subjective alignment of the precipitation zones to the climate divisions is roughly
aligned due to spatial uncertainty. The limitations of data-sparse regions were caught in
the underlying spatial uncertainty metrics, with a distance that ranged between 0 and
2.5 degrees (Figure 7). Climate divisions 5 and 6 and the northern portion of divisions
1 and 2 had the highest spatial uncertainty (white circles) and the highest certainty in
divisions 2 and 4. Given the uncertainty, the interpolation analysis reliability is limited to
subjective regional assessments for each station. Although there is balance in the proportion
of classification outcomes, the classification methodology would be questionable given only
four stations. With the 28 additional Mesonet stations, interpolated data further captured a
granular representation of precipitation zones.
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Figure 6. Identification of precipitation zones in Missouri using global wavelet power spectra for
the four ASOS stations mapping scheme. The mapping results delineate Regions A and B with
corresponding spectrum patterns (A and B) shown by symbols. There were no C spectrum patterns
found for this mapping scheme. Filled symbols highlight the airport stations for comparison with
future Mesonet data analysis. The climate zones (1–6) were adapted from the classification of Missouri
climate by the National Climatic Data Center (see [31]). In this map the scale is 1.75 cm = 100 km.

Figure 7. Spatial uncertainty of precipitation patterns in the four ASOS station mapping schemes,
visualized through nearest-neighbor distance analysis. The grayscale map represents distances (in
degrees) to the closest station with a similar pattern, with symbols denoting spectrum patterns A
and B. The white circles indicate regions of highest spatial uncertainty. The climate zones (1–6) were
adapted from the classification of Missouri climate by the National Climatic Data Center (see [31]). In
this map the scale is 1.75 cm = 100 km.
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Augmenting the ASOS station data with Mesonet data provides a new look at pre-
cipitation across the state, which has been previously undocumented. Significantly, it is
important to note that the Mesonet data classification matches the regional classifications
found in the four-ASOS-station mapping scheme. Unlike the four ASOS station precipi-
tation maps that were characterized by two extensive, contiguous multipolygons aligned
along a north–south axis, the augmented map depicts four distinct regions. Based on the
spatial distribution of global wavelet power spectra (Figure 8), the identified precipitation
zones (A, B, C) demonstrate a concordance with the state’s recognized geographic climate
divisions (1–6). Precipitation zone A comprised two regions, one in climate division 1
(northwest) and the second in climate divisions 4 and 5 (south-central). Precipitation zone B
comprised a single region primarily in climate divisions 2 and 3. A station in the northwest
of climate division 4 further elongated the region to the southwest. Zone B was notably
diagonal, cutting through the central portion of the state in a northeast-to-southwest config-
uration. Precipitation zone C was predominantly in the very southeast of the state, residing
in primarily climate division 6.

Figure 8. Identification of precipitation zones in Missouri using global wavelet power spectra for the
augmented mapping scheme (four airports and Mesonet stations). The mapping results delineate
regions A, B, and C with corresponding spectrum patterns (A, B, C) shown by symbols. Filled
symbols highlight the ASOS stations for comparison with future Mesonet data analysis. The climate
zones (1–6) were adapted from the classification of Missouri climate by the National Climatic Data
Center (see [31]). In this map the scale is 1.75 cm = 100 km.

Although there are six times as many sources of data for the augmented interpolation,
gaps in the spatial data still posed areas of greater uncertainty (Figure 9). Observing the
areas of uncertainty, with a few exceptions, the distribution of additional stations renders a
map with an overall lower level of uncertainty. The distances of spatial uncertainty over
the map are from 0 to 1 degree. The white circle indicates bull’s eyes of uncertainty on
the order of 1 degree and can be found south of the Kanas City in the Cass County area
and south of St. Louis in the St. Francois area. Additional information in the Cass County
region could further codify this diagonal feature (precipitation zone B), whereas additional
information south of St. Louis could delineate precipitation zone C from zone A in climate
division 5.
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Figure 9. Spatial uncertainty of precipitation patterns in the augmented mapping scheme (four ASOS
and Mesonet stations), visualized through nearest-neighbor distance analysis. The grayscale map
represents distances (in degrees) to the closest station with a similar pattern, with symbols denoting
spectrum patterns A, B, and C. The white circles indicate regions of highest spatial uncertainty. The
climate zones (1–6) were adapted from the classification of Missouri climate by the National Climatic
Data Center (see [31]). In this map the scale is 1.75 cm = 100 km.

By comparing the two mapping schemes, the spatial metrics in Tables 2 and 3
demonstrated that increasing data point density across the state greatly enhances
the granular representation of spatial qualities from ground-based sensors. With the
addition of the 28 Mesonet stations, there was a 19.58% coverage increase statewide,
using the quarter-degree uniform grid and threshold. Spatial overlap between climate
divisions 1 and 6 diminished the incremental coverage provided by the additional
stations. The total average distance between stations decreased from 105.96 km to just
40.91 km. The standard deviation decreased by 63% from the four-airport station scheme
to the augmented scheme, with a decrease in variance of 87%. These results indicate that
the station coverage was more uniform, providing an increase in spatial accuracy and
resolution. A substantial reduction in minimum and maximum distances again points
to the increase in data density. Ultimately, the reduced interquartile distance (IQD)
signifies that distances are more tightly clustered around the median in the scheme with
additional stations. This indicates a decrease in overall variability and more uniform
data distribution.
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Table 3. Spatial analysis metrics for the two mapping schemes, comparing four ASOS stations to
32 combined ASOS and Missouri Mesonet stations. Metrics include coverage percentage, average
distance, standard deviation, variance, minimum, maximum, and interquartile distances, illustrating
the impact of station density on spatial representation.

Spatial Metrics Four ASOS Stations 32 ASOS + Mesonet

Coverage (%) 3.44 23.02
Average total distance (km) 105.96 40.91

Standard dev. dist. (km) 53.97 19.73
Variance distance (km2) 2913.17 389.46
Minimum distance (km) 6.88 2.17
Maximum distance (km) 283.21 90.79

Interquartile distance (km) 74.24 30.18

4. Conclusions
This paper sought to show the benefits of augmenting NWS airport ASOS weather

station precipitation data with Mesonet station data to better depict climatological signals
in precipitation patterns across Missouri. Previous studies have used datasets that were
spatially and temporally coarse compared to those used here and studied using Fourier
analysis techniques. The resulting regional precipitation insights that were derived from
the Mesonet data were both consistent with the airport ASOS station data and revealed
spatial details that were not captured in the ASOS data alone.

Using the wavelet method to classify and illustrate station precipitation patterns has
proved successful. Not only were there distinct signals in the precipitation data, but these
signals fell within known cyclic patterns. Despite temporal constraints on discernible signal
length due to limited sample sizes, the nearly 25 years of Mesonet station data offered
a sufficient sample for ENSO length diagnostics. In time, this analysis will render an
increasingly better depiction of the spatial characteristics of precipitation patterns as station
records increase.

The results of this analysis provided a subjective look at precipitation sensitivity with
regard to annual and ENSO signals. It does not, however, indicate that one precipitation
zone receives more precipitation than another. Rather, the zones denote regions where the
precipitation patterns have aligned with an annual or ENSO signal or neither. This study
lacked direct temporal evaluations for deriving specific ENSO phase-related attributes.
Rather, by detrending and normalizing the station data, there was a focus on the precipita-
tion patterns, not fluctuations of the absolute amounts. Therefore, if prolonged droughts
and above-average precipitation season(s) are driven by similar cyclic trajectories, their
power spectra would be similar. This implies that this specific study does not address the
nuances of precipitation amount to ENSO phases, strength, or duration.

Instead, this global wavelet spectrum analysis provided a method to cut through
temporal nuances of each station and summarize the location broadly. The analysis showed
a diagonal precipitation zone running northeast to the southwest flank by two regions
marked by precipitation driven primarily due to an annual signal. The classification
relegated stations lacking statistically significant annual or ENSO signals to a residual
category, with these stations clustering in the furthest southeast region, the bootheel portion
of the state.

Future considerations concerning the effectiveness and utility of the wavelet to identify
precipitation signals abound. Using the global wavelet spectrum alone masks the discrete
patterns over the time series observed in the scalogram. This specific analysis employed a
Morlet (6) ‘mother’ wavelet, chosen for its optimal balance between temporal and power
resolution. Smaller wavelet scales, corresponding to higher-frequency components, re-
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vealed two distinct periods of strongest average temporal power related to ENSO across all
categorized stations: approximately 2006–2013 and 2015–2024. A cross-wavelet transform
of the locations that had this ‘ENSO-like’ signal was used to further evaluate these time
periods. The results supported that during this time period, both ENSO and precipitation
were either directly in-phase or slightly leading, suggesting that strong ENSO variability
coincided with the dominant precipitation patterns during this time. Future research
could reveal that linking precipitation zones sensitive to ENSO changes may enable more
focused regional efforts to anticipate areas most impacted by climate change across the
state. Additionally, this methodology could be extended to future comparative studies in
diverse mid-latitude regions, including parts of Europe, Central Asia, or southern Brazil.
Such research aims to determine if similar regional precipitation clusters associated with
intrinsic cyclic behavior emerge.
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